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Abstract

The virial–pressure equation of state of hard-sphere mixtures in the colloidal limit obtained from ad hoc expressions of the contact values of the
pair correlation functions and the related question of the fluid–fluid phase separation are revisited. The sensitivity of the location of the binodal to
the exponential behaviour of the contact value of the big spheres pair correlation function and its size ratio dependence are analyzed by considering
a model for the mean force potential that is used to parameterise the contact value. Agreement with simulation data or accurate integral equations
theories is improved when compared with previous approaches based on the virial–pressure equation of state.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the proposal of Biben and Hansen [1,2] that hard-sphere
(HS) mixtures can phase separate, numerous works has been per-
formed to establish the phase diagram of the HS mixture in the
so-called colloidal range, i.e. when the size ratio R of the big
and small hard spheres is large (see Refs. [3,4] for detail). The
binary mixture of hard spheres with large difference in size is
indeed the simplest model from which one can study important
questions in the physics of complex fluids, such as the purely
“entropic” phase transitions or the validity of the effective fluid
approach. This model may also be used to analyze the beha-
viour of pseudo-binary mixtures of hard-sphere-like colloids. A
quantitative description of the phase diagram is however a dif-
ficult task when the size asymmetry is large. On the one hand,
sampling by computer simulation the configurations of the big

Abbreviations: MC, Monte Carlo; EOS, equation of state; pcf, pair correla-
tion function; MD, molecular dynamics.
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spheres is very inefficient in this case [3]. For the methods that
use integrals equations now, the non-convergence problem in
a large domain of the parameters space is a severe limitation
[5,6], besides the need of very accurate closures. Dijkstra et al.
(DvRE) computed the first reliable phase diagram of the binary
HS mixture, in the colloidal range, in 1999 [3]. These authors
performed Monte Carlo (MC) simulations of the true mixture to
explore the fluid–solid phase transition but could not study the
dense fluid region in the same way. Rather, they used the effective
fluid approach and predicted in this way a metastable fluid–fluid
phase transition. Very recently, Ayadim and Amokrane (AA [7])
solved the Ornstein-Zernike equations with a closure having a
large enough convergence domain to permit exploration of the
dense fluid region. They validated in this way the equivalence
in practice between the true mixture of big and small spheres
and the associated one component effective fluid of big spheres
as introduced by the McMillan–Mayer theory [8]. These two
studies [3,7] are complementary since the true mixture can be
studied in the dense fluid range only from the integral equa-
tion method. As a consequence, the work of AA legitimates the
use of analytical models to represent the effective interaction in
asymmetric hard-sphere mixtures at large size ratio R > 5. Such
models are, for instance, the depletion potential of Götzelmann
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et al. [9] or, more drastically, the corresponding effective sticky
potential [10,11] for which simulations have been performed
by Miller and Frenkel [12]. The latter model reproduces almost
quantitatively the phase diagram of the HS fluid mixture and so
the (metastable) fluid–fluid equilibrium in the colloidal limit.

It is however clear that both the computer simulation method
and the integral equation approach involve a considerable
amount of numerical work and hence cannot be used to rapidly
estimate the phase diagram in specific situations. Numerous
attempts [13–22] have thus been made to improve the analy-
tical equation of state (EOS) of Boublik, Mansoori, Carnahan,
Starling and Leland (BMCSL) [23,24] of HS mixtures in the
regime of high size asymmetry. Indeed, this widely used EOS
is accurate at small size asymmetry, but it does not predict any
phase transition in the HS mixture fluid in the colloidal range.
Among such attempts, the approach of Henderson et al. (here and
after H et al.) [14,25,26] based on the virial–pressure EOS from
the contact values gij of the pair correlation functions (pcf) has a
special status. This approach involves analytical ad hoc correc-
tions in order to get a better agreement of the gijs with the known
simulation data, that do verify specific internal constraints in the
colloidal limit (i.e. in the wall-particle limit the contact theo-
rem: 1 + 4η1g11 = g12 and the behaviour ln g22 ≈ R, where the
subscript 2 is for the large spheres and η1 is the packing frac-
tion of the small spheres). From any new ad hoc set of the three
gijs, one can readily integrate the virial–pressure EOS to obtain
the Gibbs energy of the mixture G (P, x2) versus P pressure
and x2 concentration. And so on, the equilibrium fluid–fluid line
(or binodal) is deduced from the constant pressure G (P, x2)
curve when a common tangent at two concentrations may be
obtained. Although straightforward and appealing, the H et al.
method is very sensitive to the ad hoc corrections and therefore
questionable. As shown in our previous works [27,28] a binodal
of the HS mixture can be obtained while the gijs verify only one
of the two previous constraints. The virial–pressure binodals as
obtained from the H et al. method were also found to be quanti-
tatively poor, being systematically at too low packing fractions
of the small spheres. On the contrary, the binodals obtained from
some particular analytical EOS [17] were found almost at the
correct packing fraction but with too small values of g22 in the
colloidal limit (i.e. without exponential behaviour versus R).
Indeed even three inaccurate gij contact values can combine in
such a way so as to eventually produce a binodal.

Therefore, the method of H et al. is relevant only if all the
expressions of the gijs, at all concentration and size ratio are in
accordance with simulation data, and verify also the selected
physical constraints of the colloidal limit to make the corres-
ponding EOS reliable. For the reasons recalled above, MC
simulations and/or integral equations for the true mixture can
hardly be used to achieve this goal especially at very large size
ratio, high packing fraction of the big spheres or close to the cri-
tical domain. On the other hand, the effective fluid approach is
feasible, but it gives only the contact value g22 and that also with
numerical difficulties at very large size ratio. Consequently, the
method of H et al. may be useful in the colloidal domain provided
one can find analytical expressions which are, at least, in agree-
ment with simulations and/or accurate integral equations results,

in the domain where these methods can be performed. For this
purpose, guidelines are useful to parameterise the contact value
g22. A step in this direction is to consider several new approxi-
mate expressions of the contact values g22 which, basically, rest
on the model of potential of mean force, to calculate the corres-
ponding binodals and to compare them with the simulation data
of the effective fluid. The aim of this work is thus to explore
more systematically this route and to point out the sensitivity of
the binodal to presumably more accurate expressions of g22 (i.e.
which better agree with the available simulation data).

This paper is hence organised as follows: first we present the
various sets of parameterised gijs which are used in this work,
then, in Section 3, we discuss step by step the sensitivity of the
binodals to the various approximate expressions of these contact
values g22. From the systematic comparison of the binodals and
the corresponding g22 with simulation data we finally discuss
the expressions which better correlate binodals with accurate
contact values.

2. Expressions of the contact values

The original ad hoc formula of H et al. [14], gives exceedingly
large contact values of the big spheres pcf due to the behaviour
of the exponential terms in g22. Later, Cao et al. [25] proposed a
novel expression which includes a damping factor. But we also
found that the corresponding pressure–virial EOS produced only
very qualitative binodals at various size ratio 10 < R < 30 [27].
Finding the optimal combination of the terms in the expression
of g22 remains, therefore, to be done. In order to explore more
systematically this route, we begin here with other new expres-
sions of H et al. [26] and attempt to parameterise them by using
the known analytical expression of the mean force potential. We
thus consider various schemes, where g11 and g12 have the same
expressions but where g22 differs only slightly, and test them
versus simulation data.

The first scheme here labelled HB1, corresponds to the H et
al. [26] expressions:
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n), ρ is the number density and dk is
the hard-sphere diameter of the k species. ηk = (π/6)ρxkd
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the corresponding packing fraction and y = d1/d2 = 1/R.
In this work we also consider the development of g22, labelled

HB2:

gHB2
22 = gBMCSL

22 + f2(xA) (1e)

where f2(x) = exp(x) − 1 − x − x2/2.
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