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Abstract

This work focuses on the extension of the numbers of group parameters and application of the group-contribution lattice-fluid equation of state
(GCLF EOS). The new group parameters of the GCLF EOS were evaluated by means of the volume translated Peng–Robinson equation of state
(VTPR EOS) and the UNIFAC model. Values for 20 main groups and 33 subgroups are added into the current parameter matrix. The procedure
used in this work can also be used to evaluate group parameters for the groups not present in the current matrix. Some examples are given to show
the reliability of the new group parameters. Two new applications of the GCLF EOS are present: the effect of polymeric additive to solvents in
extractive distillation and prediction of the crystallinity of polymers in the presence of gas.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A typical problem in polymer processing involves the deter-
mination of thermodynamic properties of mixtures of polymers,
solvents, plasticizers, antiplasticizers and diluents. Models for
describing phase equilibria of polymer–solvent systems can be
classified into two general categories: activity coefficient mod-
els (e.g. UNIFAC-FV, entropic-FV, GK-FV and UNIFAC-ZM
models) [1] and equations of state (e.g. Sanchez–Lacombe,
Panayiotou–Vera, group-contribution lattice-fluid equations of
state) [2–4]. Equations of state are preferred over activity coef-
ficient models for the calculation of polymer–solvent phase
equilibria because equations of state can disclose the dependence
of phase volume on pressure, which is especially important in
estimating the swelling degree of polymers in polymer process-
ing.

Among the equations of state for polymer–solvent systems,
the group-contribution lattice-fluid equation of state (GCLF
EOS) has unique features [5,6,38]. The only input required for
this model is the molecular structures of polymer and solvent
in terms of their functional groups. At extreme conditions (very
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high pressure and very low temperature), it is very difficult to
carry out experiment and thus a predictive model is indispens-
able. Unfortunately, the number of group parameters available
for the GCLF EOS is somewhat limited, and involve only 24
main groups and 47 subgroups by far. There are many gaps in
the group interaction parameter table [7].

In this work the missing group interaction parameters of the
GCLF EOS are evaluated based on the principle that all the
group parameters can be obtained using only pure component
and binary equilibrium properties of low molecular weight com-
ponents, and PVT data of polymers are not needed. In other
words, the group interaction energy (e0,k, e1,k, e2,k) and reference
volume parameters (R0,k, R1,k, R2,k) may be derived by means
of an equations of state (EOS), e.g. Peng–Robinson (PR) EOS
or its modification [8]; the group binary interaction parameters,
αmn, may be derived using activity coefficient models, e.g. the
UNIFAC model [9–18]. The accuracy and reliability of the PR
EOS or its modifications for predicting P–V–T behavior of low
molecular weight pure compounds and the UNIFAC model for
predicting activity coefficient of low molecular weight binary
system have already been accepted. The UNIFAC model is one
of the most important academic contributions of Prof. Jürgen
Gmehling and first developed by Fredenslund et al. [39]. Prof.
Jürgen Gmehling’s work has affected our research in the field
of polymer thermodynamics and special distillation processes
until now.
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Of course, one possibility to obtain the necessary information
is to carry out experimental measurements for the pure compo-
nent and the mixture of interest. But measurements are often very
time-consuming and expensive. For example, for 10 new-added
groups (assuming that they belong to different main groups),
there are 105 group parameters to be correlated. If an average
number of 10 data points is required to determine one group
parameter, in total there are 1050 data points to be measured.
However, the existing parameter matrix of the UNIFAC model
is developed to include 64 main groups and over 100 subgroups.
That is to say, to fill the gap of missing group parameters, the
amount of experimental work is apparently too large since the
data cannot be found in the literatures. This work provides a
way to extend the group parameter matrix of the GCLF EOS
which can be used when the experiments are time-consuming
and expensive under extreme conditions.

The use of the GCLF EOS to predict the influence of poly-
meric additives to solvents for extractive distillation [19,20] is
tested. In recent years, the use of polymers as additives in sol-
vents for extractive distillation has received increasing attention
[21–23], but no thermodynamic model has been used to evaluate
the influence of the polymers on the separation factor.

In polymer processing, the crystallinity of a polymer in the
presence of gas is difficult to measure and has never been
reported in the literatures. However, the crystallinity of a poly-
mer is an important physical quantity, which would help us to
explore the interaction between semicrystalline polymer and gas
and to explain the change of solubility and swelling degree at
different temperatures and pressures. In this work, a method is
described to predict the crystallinity of a polymer by the GCLF
EOS.

2. Extension of the group parameter matrix

2.1. Equation of state

The GCLF EOS is derived based on the Panayiotou–Vera
EOS [24,25], and is of the form [4–7]:
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where P̃ , T̃ and ṽ are the reduced pressure, temperature and
molar volume, respectively, and defined by:
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where z = 10, R = 8.314 J mol−1 −1, vh = 9.75 × 10−3 m3

kmol−1, q is the interaction surface area parameter, r the
number of lattice sites occupied by a molecule, z the coordi-
nation number, R the universal gas constant, vh the volume
of a lattice site and P*, T* and v∗ are referred to as scaling
parameters.

This equation of state contains two adjustable parameter: the
molecular interaction energy, ε*, and the molecular reference
volume, v∗. Once these two parameters are known, all of the
remaining parameters in Eq. (1) can be determined from Eqs.
(2)–(4) at a given temperature and pressure. Properties of a sys-
tem can then be determined by solving Eq. (1) with respect to
reduced volume.

For pure components, the molecular interaction energy
between like molecules, ε∗

i , is obtained from the following mix-
ing rule:
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where ekk is the group interaction energy between like groups k:
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where T (K) is the system temperature, and T0 is the arbitrarily set
to 273.15 K. The group surface area fractions, Θ(i)

k , are expressed
by:
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where n
(i)
k is the number of group k in component i, and Qk is

the dimensionless surface area parameter of group k, as used
in the UNIFAC method. The molecular reference volume, v∗

i ,
is calculated from the group reference volume parameter, Rk,
using the following mixing rule:
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where Rk is given by:
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For a binary mixture, the basic form of Eq. (1) is unchanged
and thus the solving procedure is similar as that of pure compo-
nents. But the following mixing rules are introduced:

ε∗ = θ̄1ε11 + θ̄2ε22 − θ̄1θ̄2Γ̇12 �ε, �ε = ε11 + ε22 − 2ε12

(10)
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