

journal homepage: www.FEBSLetters.org

O₂ reduction by photosystem I involves phylloquinone under steady-state illumination

Marina A. Kozuleva^{a,*}, Anastasia A. Petrova^b, Mahir D. Mamedov^{a,b}, Alexey Yu. Semenov^b, Boris N. Ivanov^a

^a Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
^b A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia

ARTICLE INFO

Article history: Received 8 July 2014 Revised 13 September 2014 Accepted 1 October 2014 Available online 13 October 2014

Edited by Richard Cogdell

Keywords: Photosynthesis Electron transfer Photosystem I Oxygen reduction Phylloquinone Plastoquinone

ABSTRACT

 O_2 reduction was investigated in photosystem I (PS I) complexes isolated from cyanobacteria *Synechocystis* sp. PCC 6803 wild type (WT) and *menB* mutant strain, which is unable to synthesize phyloquinone and contains plastoquinone at the quinone-binding site A_1 . PS I complexes from WT and *menB* mutant exhibited different dependencies of O_2 reduction on light intensity, namely, the values of O_2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in *menB* mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O_2 reduction by PS I.

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Molecular oxygen, O_2 , is involved in numerous biochemical reactions in aerobic cells. In photosynthetic organisms, O_2 can interact with the photosynthetic apparatus, decreasing the quantum yield of CO_2 fixation. Moreover, as a result of such reactions, reactive oxygen species (ROS) are produced. During evolution, the photosynthetic apparatus has been optimized to minimize reactions with O_2 [1,2], although they still occur and may have a positive impact on cellular metabolism [3]. One such reaction, the so-called Mehler reaction, represents O_2 reduction by components of the photosynthetic electron transfer chain (ETC) under

E-mail address: kozuleva@gmail.com (M.A. Kozuleva).

illumination [4]. Electron flow to O_2 was shown to occur along with electron transfer (ET) to NADP⁺ [5,6]. Under conditions of limited NADPH utilization and excessive light, the Mehler reaction prevents over-reduction of the ETC and photoinhibition [7,8]. Moreover, a stable product of the Mehler reaction, H₂O₂, might be a signal messenger indicating ETC functional state [9,10].

The exact components of the ETC involved in O₂ reduction in vivo have not been yet clearly identified. Ferredoxin (Fd), an acceptor of electrons from Photosystem I (PS I), used to be considered as the main O_2 reducing agent [11], although this assumption was challenged [12,13]. Recently, it was shown that reduced Fd was only capable of low rates of O₂ reduction in the presence of NADP⁺ and its contribution to the total O_2 reduction was 5–10% [14]. This implies that thylakoid membrane-bound components play an essential role in O₂ reduction. Redox-cofactors of PS I are believed to be significant O₂ reducing agents [3,15]. The ETC of PS I consists of the primary electron donor (P_{700}) , the primary (A₀), and secondary (A₁, F_X , F_A , and F_B) electron acceptors (Fig. 1A). Under single-flash illumination, the terminal electron cofactors of PS I, the [4Fe–4S] clusters $(F_A/F_B)^-$, are oxidized by O₂ in the absence of Fd [16]. This reaction results in production of the superoxide anion-radical (O₂⁻) outside the thylakoid membrane. Using the EPR-detector 1-hydroxy-4-isobutyramido-

http://dx.doi.org/10.1016/j.febslet.2014.10.003

0014-5793/© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Abbreviations: DMF, dimethylformamide; ET, electron transfer; ETC, electron transfer chain; Fd, ferredoxin; MV, methyl viologen; PS I, photosystem I; PhQ and PhQ⁻, phylloquinone and phyllosemiquinone; PQ and PQ⁻, plastoquinone and plastosemiquinone; ROS, reactive oxygen species; TMPD, *N*,*N*,*N'*,*N'*-tetramethyl-*p*-phenylenediamine; TMT-H, 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium; *V*_{ET}, *V*^D_{ET} and *V*_{ET}^{MV}, rates of electron transfer as such and to O₂ and MV, respectively; WT, wild type

^{*} Corresponding author at: Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia. Fax: +7 4967 330532.

Fig. 1. (A) Arrangement of electron transfer cofactors in PS I. (B) Diagram of forward electron transfer in cyanobacterial PS I with lifetimes and E_m values of the cofactors. E_m values of (O_2/O_2^-) in water and dimethylformamide (DMF) are also shown.

2,2,6,6-tetramethylpiperidinium (TMT-H), O_2^- was directly shown to be produced within as well as outside the membrane under steady-state illumination of isolated thylakoids [17,18]. This allowed assuming that at least two cofactors reduce O_2 simultaneously. This assumption is supported by the study of apparent K_m of spinach PS I for O_2 that revealed the existence of at least two sites of O_2 reduction [19]. In the lipid bilayer of the membrane, the midpoint redox-potential (E_m) of (O_2/O_2^-) is close to that in dimethylformamide ($-500 \div -600$ mV vs. NHE) [20]. Phylloquinones (PhQ), which occupy the quinone-binding sites of PS I (A_1 -sites), and the [4Fe–4S] cluster F_X are characterized by rather negative E_m values and are capable of O_2 reduction within the membrane (Fig. 1B). PhQ [21,22] and F_X [23] were proposed to be O_2 reducing cofactors, however there is no direct evidence proving their involvement in O_2 reduction.

In order to investigate the possible role of phyllosemiquinone (PhQ⁻⁻) at the A₁-site in O₂ reduction, we used PS I isolated from the wild type (WT) and PhQ-lacking mutant strain of *Synechocystis* sp. PCC 6803 with the gene encoding 1,4-hydroxynaphthoyl-CoA-synthase (*MenB*) knocked out [24,25]. In mutant, plastoquinone (PQ) occupies the A₁-sites, with E_m (PQ/PQ⁻⁻) ~100 mV more positive than E_m (PhQ/PhQ⁻⁻) in PS I from WT [26]. In this study, it was found that PS I complexes from the WT and *menB* mutant exhibited different dependencies in O₂ reduction on light intensity, and this was interpreted as evidence for direct PhQ involvement in O₂ reduction.

2. Methods

Cells of *Synechocystis* sp. PCC 6803 wild type and mutant strains were grown in BG-11 medium at 30 °C under white fluorescent illumination. PS I complexes were isolated as described in [27]. Reaction medium contained 50 mM HEPES–KOH (pH 7.6), 20 mM NaCl, 5 mM MgCl₂, 0.03% β -dodecyl-*n*-maltoside; *N*,*N*,*N'*,*N'*-tetra-methyl-*p*-phenylenediamine (TMPD) and sodium ascorbate were added as artificial electron donors to photooxidized P_{700}^{+} . Redox state of P_{700} was determined by difference in absorption at 810–860 nm with PAM101 equipped with EDP700DW module.

A suspension of PSI was placed in a standard chamber (WALZ. Germany) and illuminated by the white light of an incandescent lamp (KL-1500) for 30 s. Light intensity was varied by altering voltage. Light-induced steady-state rate of O₂ reduction was measured as O₂ uptake with Clark type O₂-electrode under stirring at 22 °C. Suspension of PSI was placed in a custom-build thermostatic chamber and illuminated by LED with maximum emission at 660 nm for 1 min. Intensity of the LED was varied by neutral filters or altering electric current. The steady-state rates of ET from PS I to O_2 were proportional to the rates of O_2 uptake because a single PS I turnover resulted in generation of O₂⁻. In the presence of methyl viologen (MV), a single PS I turnover also resulted in O₂⁻ generation via the radical form of MV with the rate constant equal to 8×10^8 $M^{-1} s^{-1}$ [28]. Superoxide radicals further produce H_2O_2 in the reaction with ascorbate, present in the suspension at high (5–10 mM) concentration, thereby suppressing spontaneous dismutation of O₂⁻. The resulting stoichiometry was 1 electron per 1 O₂ molecule consumed [29], and, in our experiments, it was confirmed by addition of superoxide dismutase and catalase. Thus, light-induced O₂ uptake was used as readout of O2 reduction in the absence and presence of MV. Light intensity as photon flux density $\mu E m^{-2} s^{-1}$ was determined using a LI-COR model LI-250 quantum meter (Licor, Nebraska, USA).

TMPD-2HCl, sodium ascorbate, MV, β-dodecyl-*n*-maltoside were purchased from Sigma and AppliChem.

3. Results

Steady-state illumination of isolated PS I complexes resulted in O₂ reduction (Fig. 2). In order to accurately study the mechanism of O₂ reduction by PS I under steady-state illumination, this reaction must be the overall ET limiting step. In contrast to O₂, MV is a very efficient acceptor of electrons from the terminal cofactors of PS I, with the rate constant of reduction equal to $10^7 \text{ M}^{-1} \text{ s}^{-1}$ [30]. In the presence of MV, the rate of ET (V_{ET}) is equal to the rate of MV reduction ($V_{\text{ET}}^{\text{MV}}$), and this rate is limited by electron donation to P_{700}^+ [31]. The comparison of the rate of ET to O₂ ($V_{\text{ET}}^{O_2}$) and $V_{\text{ET}}^{\text{MV}}$ is a useful approach to reveal the rate-limiting step. The addition

Download English Version:

https://daneshyari.com/en/article/2047544

Download Persian Version:

https://daneshyari.com/article/2047544

Daneshyari.com