

journal homepage: www.FEBSLetters.org

Rpi-blb2-mediated late blight resistance in *Nicotiana benthamiana* requires *SGT1* and salicylic acid-mediated signaling but not *RAR1* or *HSP90*

Sang-Keun Oh^{a,b}, HyeRan Kim^{b,*,1}, Doil Choi^{a,*,1}

^a Department of Plant Science, Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea ^b Korea Research Institute of Bioscience and Biotechnology, and Cabbage Genomics Assisted Breeding Supporting Center, 111, Gwahangno, Yuseong-gu, Deajeon 305-806, Republic of Korea

ARTICLE INFO

Article history: Received 21 December 2013 Revised 12 February 2014 Accepted 14 February 2014 Available online 27 February 2014

Edited by Julian Schroeder

Keywords: Rpi-blb2 AVRblb2 SGT1 Salicylic acid Resistance Phytophthora infestans Nicotiana benthamiana

1. Introduction

ABSTRACT

The Rpi-blb2 recognizes the presence of the *Phytophthora infestans* AVRblb2 and initiates effectortriggered immunity (ETI). We performed gain-of-function and loss-of-function studies in *Nicotiana benthamiana* to elucidate *Rpi-blb2*-mediated resistance to *P. infestans. Rpi-blb2* triggered a hypersensitive response through *SGT1*-mediated, but not *RAR*-mediated or *HSP90*-mediated, pathways. *NbSGT1* was also required for basal and ETI-mediated by Rpi-blb2 in *N. benthamiana*. Moreover, salicylic acid (SA) affected basal defense and *Rpi-blb2*-mediated resistance against *P. infestans*. The increased susceptibility of *Rpi-blb2*-transgenic plants in the *NahG*-background correlated with reduced levels of SA. These findings provide evidence for the roles of SGT1- and SA-signaling in *Rpi-blb2*-mediated resistance against *P. infestans*.

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

(NB-LRRs), which recognize Avr effectors and activate a hypersensitive response (HR) to infection [4].

The gene encoding Rpi-blb2, which has a coiled-coil (CC)-domain in its N-terminus region, recognizes *P. infestans* AVRblb2 [5,6]. AVRblb2 is expected to have Avr activity that directly or indirectly activates the HR and associated disease-resistance responses mediated by *Rpi-blb2* [7]. The HR includes both a local increase and a systemic increase in endogenous salicylic acid (SA) levels, the generation of reactive oxygen species (ROS), and the up-regulation of a large set of defense genes [8].

SA-mediated defense responses play an important role in the *R*-gene-mediated resistance leading to the expression of defenserelated genes, which are presumed to contribute to resistance [9]. Moreover, SA is required for basal defense and systemic acquired resistance (SAR), which confers resistance against a broad spectrum of pathogens [8,10]. SAR is associated with the expression of pathogenesis-related proteins and is accompanied by several defense responses [10]. Basal defense responses are activated in susceptible plants by pretreatments with pathogenderived molecules or SA [10], but they are not sufficient to arrest pathogen growth. The *NahG* gene encodes a salicylate hydroxylase that catalyzes the conversion of SA to catechol and prevents SA

Phytophthora infestans, the cause of one of the most destructive diseases in *Solanum* species, delivers to host cells effectors that interact with target proteins to reprogram host defenses [1]. Avirulence (Avr) effectors, such as RXLR proteins, can function in innate immunity (effector-triggered immunity; ETI) in plant varieties that carry the cognate disease-resistance (*R*) genes [2,3]. Many late blight *R* genes were introgressed into potato cultivars from the wild species *Solanum demissum* and *Solanum bulbocastanum*. Some genes, including *R3a*, *Rpi-blb1*, and *Rpi-blb2*, were cloned from wild potato cultivars [3]. Perception mechanisms based on *R*-gene products that recognize cognate pathogen Avr proteins and a number of *R-Avr* gene interactions have been characterized [4]. Avr protein activity is recognized by intracellular R proteins in plant cells, culminating in defense signaling and pathogen resistance [4]. Most R-proteins have nucleotide-binding and leucine-rich-repeats

* Corresponding authors. Fax: +82 428604149 (H. Kim), +82 28732056 (D. Choi). E-mail addresses: kimhr@kribb.re.kr (H. Kim), doil@snu.ac.kr (D. Choi).

¹ These corresponding authors contributed equally to this work.

http://dx.doi.org/10.1016/j.febslet.2014.02.028

0014-5793/© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

accumulation when *NahG*-transgenic plants are challenged by pathogens [11,12]. Likewise, SA is required for the function of many *R*-genes.

Knockdown analyses led to the identification of signaling components downstream of the R proteins [13]. The enhanced disease susceptibility-1 protein (EDS1) is a central regulator of basal resistance and the ETI mediated by Toll-interleukin-1 (TIR)-NB-LRR proteins [14]. In contrast, CC-NB-LRR proteins require SGT1 (a suppressor of the G2 allele of skp1), RAR1 (required for Mla12 resistance), and HSP90 [15]. Among those, the ubiquitin ligase-associated protein SGT1 is essential for the function of several R genes. In N. benthamiana, SGT1 homologues are indispensable for Rxdependent resistance to Potato virus-X [16] and for R3a-dependent resistance to *P. infestans* strains carrying *avr3a*^{EM} [17]. The silencing of SGT1 in potato plants interferes with the RB gene required for RBmediated broad-spectrum resistance to potato late blight [18]. In addition. SGT1 is required for the resistance conferred by some R genes that depend on RAR1 and HSP90 [19,20]. The knockdown of NbHSP90 resulted in the loss of R3a-mediated resistance to P. infestans in N. benthamiana [17]. There is no information available, however, about Rpi-blb2-mediated resistance pathways.

To elucidate the signaling pathway mediated by *Rpi-blb2*, we examined the molecular and physiological functions of *Rpi-blb2* in *N. benthamiana*, a Solanaceous model plant that is well established for the functional analysis of *P. infestans* infections using overexpression- or VIGS-technology. Here, we demonstrate the requirement for *SGT1*- and the SA-signaling pathway, but not for *RAR1* or *HSP90*, in eliciting *Rpi-blb2*-mediated resistance against *P. infestans* and its effector *AVRblb2*.

2. Materials and methods

2.1. Bacteria and plants

Escherichia coli and *Agrobacterium tumefaciens* were grown in LB media with appropriate antibiotics at 37 °C and 28 °C, respectively. *P. infestans* 88069 was cultured on rye agar medium at 20 °C. Transgenic *N. benthamiana* plants were grown in a growth chamber and maintained under a 16-h photoperiod at 22–25 °C.

2.2. RT-PCR analysis

Total RNA was extracted from *N. benthamiana* plants using TRI reagent according to the manufacturer's instructions (Invitrogen, Carlsbad, CA). RT-PCR was performed to detect the transcript levels of several genes using the primer sets listed in Supplemental Table S1. The expression of *PiEF2* α was controlled with a primer pair specific for the constitutively expressed *NbActin* gene [21].

2.3. In planta HR assays

For agroinfiltration assays, recombinant *A. tumefaciens* was grown as described previously [6]. Agrobacterium solutions were infiltrated at an adjusted OD_{600} of 0.4. For HR assays, *Agrobacterium* expressing the pGR106-*AVRblb2* or control (pGR106-*dGFP*) were infiltrated with a final OD600 of 0.3 into ten-transgenic *N. benthamiana* plants. Five plants were inoculated with the pGR106-*AVRblb2*, and five plants were inoculated with the control. The assays were repeated at least three times with similar results (20 inoculation sites per five plants) [6].

2.4. Evaluation of disease resistance

Four-week-old homozygous *N. benthamiana* plants were inoculated with agar plugs containing *P. infestans* or with *P. infestans* zoospores $(5 \times 10^5 \text{ zoospores/mL})$ [5]. Transgenic plants were

infected, and disease symptoms appeared within 4–6 days after infection (dai). The index of *Phytophthora* infection was determined visually based on necrotic leaf areas. All experiments were repeated at least twice [21].

2.5. VIGS assay

For the VIGS assay, cultures containing Agrobacterium with a TRV-derivative vector (TRV2-dGFP, TRV-NbSGT1, TRV-NbHSP90, or TRV-NbRAR1 constructs; provided by the Dr. Dinesh-Kumar Lab.) and Agrobacterium GV3101 (TRV1) were transferred into LB media with antibiotics (50 mg/L kanamycin and 25 mg/L rifampicin) and grown at 28 °C to an A₆₀₀ of 0.8. The cultures containing Agrobacterium (with the TRV2-dGFP and TRV2-NbSGT1 constructs) were mixed at a 1:1 ratio ($OD_{600} = 0.3$) with GV3101 (TRV1) and infiltrated into the expanded leaves of 4-week-old wild-type (WT) and transgenic *N. benthamiana* plants, respectively. On day 21 after infiltration, transient expression of pGR106-dGFP or pGR106-AVRblb2 was induced by mixed infiltration of appropriate A. tumefaciens strains carrying each individual gene in an induction buffer at a ratio of 1:1 (final $OD_{600} = 0.6$) [6]. For RT-PCR analysis, total RNA was extracted from control (dGFP), SGT1-silenced, HSP90silenced, and RAR1-silenced N. benthamiana leaves using TRIZOL solution (Invitrogen, Carlsbad, CA). Specific primers were used to amplify several genes annealed outside the VIGS target region (Table S1).

2.6. Measurement of ion leakage

Ion leakage was measured as described by Oh et al. [21]. After pathogen inoculation, leaf discs (1-cm diameter) were incubated in 5 ml distilled water for 2 h at room temperature. The electrolyte leakage from the leaf discs was measured using a conductivity meter (model 455C; lstek, http://www.istek.co.kr/).

2.7. Trypan-blue staining

Trypan-blue staining (TBS) was performed to detect dead *N. benthamiana* cells and *P. infestans* mycelia [21]. A trypan-blue stock solution (10 g phenol, 10 ml glycerol, 10 ml lactic acid, 10 ml water, and 0.02 g trypan blue) was prepared, and a working solution was then prepared by diluting the stock solution with ethanol (96%, 1:2 [v/v]). Infected *N. benthamiana* leaf discs (18-mm diameter) were transferred into a lidded 50-ml Falcon tube and covered with diluted trypan-blue solution. The Falcon tubes were then placed in a heated water bath, and the staining solution was boiled for 2 min. The leaf discs were left overnight in the TBS solution and destained overnight in a chloral hydrate solution (2.5 g ml⁻¹) [21].

2.8. DAB staining for H_2O_2 detection

To detect plant cell death and H_2O_2 levels after the appropriate assays were performed, leaves were stained with 1 mg ml⁻¹ 3,3'diaminobenzidine (DAB; Sigma, St. Louis, MO), as described previously [21]. DAB staining intensity indicating H_2O_2 levels was analyzed in arbitrary units with ImageJ 1.42q (http://rsb.info.nih. gov/ij/) [21].

2.9. SA and SAG determinations

SA and SA glycoside were extracted from *N. benthamiana* leaves (0.5 g tissue) and separated and quantified by HPLC, as described previously [21]. Briefly, SA and SAG concentrations were expressed in μ g g⁻¹ fresh weight. As an internal standard for SA, 50 mg 3,4-dihydroxybenzoic acid (3,4-DHBA, Sigma, St. Louis, MO) was added per gram of leaf fresh weight. SA was quantified by fluorescence

Download English Version:

https://daneshyari.com/en/article/2047599

Download Persian Version:

https://daneshyari.com/article/2047599

Daneshyari.com