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Abstract

Equal area rules are fundamental constructs in thermodynamics for determining conditions of equilibrium. The Maxwell equal area rule (MEAR)
provides saturated volumes when the two-phase isotherm/isobar cuts the van der Waals loops such that the areas above and below are equal. Another
equal area rule exists for determining the phase compositions in a binary mixture when plotting the derivative of the total Gibbs energy against the
composition. In this work, we show that in the determination of phase compositions in reactive systems, an equal area rule exists under the correct
transformation of the mole fractions.
© 2006 Elsevier B.V. All rights reserved.
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John M. Prausnitz
One of us (KRH) had the singular good fortune to have John

as his instructor in graduate thermodynamics at Berkeley and to
have benefited form some discussions with him. At that time, I
had not really settled upon a research area in which I was pas-
sionate, but John changed that and instilled an excitement in
me for the field that has lasted 43 years. Although for personal
reasons, I could not remain at Berkeley and study under his tute-
lage, I have always felt that John was available for consultation
and advice throughout my career. I have benefited enormously
from this relationship, and I am certain that everyone has who
has come into contact with this exceptional person feels the
same.

From John, I learned to think differently from the crowd. I
would like to think that he enjoys reading this paper that extends
a common thermodynamics construct to chemical equilibrium.
Even an experimentalist dabbles in theory sometimes.

1. Introduction

Two equal area rules have appeared in the literature for
determining equilibrium conditions. The classical one is the
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Maxwell equal area rule (MEAR). This construct appears in
most thermodynamics textbooks. It locates the equilibrium vol-
umes for pure components from an equation of state (EOS) by
equalizing the areas formed by the van der Waals loops of an
isotherm.

More recently, Eubank and Hall [1] proved the existence of
another equal area rule that enabled finding the equilibrium
compositions for binary mixtures at constant temperature and
pressure. They plotted the mole fraction derivative of the total
Gibbs energy against composition to find the equilibrium com-
positions using an equal area rule. Shyu et al. [2] used the equal
area method to calculate the compositions of two or three phases
in equilibrium for ternary systems. Hanif et al. [3,5] discussed
MEAR in connection with pure component phase equilibrium
using an EOS. Then, Shyu et al. [4] proposed the maximum
partial area rule for applying the equal area rule to phase equi-
librium calculations. Later, Hanif et al. [3,5] extended the use
of the equal area rule for calculating multi-phase equilibrium
problems. Finally, Iglesias-Silva et al. [6] collected all the equal
area techniques into an efficient algebraic method. Recently,
Ung and Doherty [7,8] used transformed mole fractions to solve
the problem of phase equilibrium in reactive systems. Using
this transform changed the constrained problem into an uncon-
strained problem.

In this work, we have used the transformed mole fractions
and show that an equal area construct can determine the phase
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compositions in simple reactive systems. The numerical proce-
dure using equal area to determine the composition in reactive
systems is simple and fast.

2. Derivations

The total Gibbs energy of a C-component, R-reaction mixture
is:

G =
C∑

i=1

niµi (1)

subject to R equilibrium reactions:

C∑
i=1

νi,jµi = 0 for j = 1, 2, . . . , R (2)

where ni is the number of moles of component i, µi is the
chemical potential of component i and νi,j is the stoichiomet-
ric coefficient of component i in reaction j. This means that
only (C − R) mole fractions are independent variables. Ung and
Doherty [7,8] transform the mole fraction using R reference
components to achieve an unconstrained system of (C − R) equa-
tions. They use:

Xi = n̂i

n̂T

=
[
ni − νT

i (Vref)−1nref
]

[
nT − νT

T (Vref)−1nref
] =

[
xi − νT

i (Vref)−1xref
]

[
1 − νT

T (Vref)−1xref
]

for i = 1, 2, . . . , C − R (3)

with

νT
i = (νi,1, νi,2, . . . , νi,R) (4)

νT
T = (νT,1, νT,2, . . . , νT,R), νT,i =

C∑
k=1

νk,i (5)

nref = (nC−R+1, nC−R+2, . . . , nC)T (6)

xref = (xC−R+1, xC−R+2, . . . , xC)T (7)

C−R∑
i=1

Xi = 1 (8)

and

Vref =

⎛
⎜⎜⎜⎜⎝

νC−R+1,1 νC−R+1,2 . . . νC−R+1,R

νC−R+2,1 νC−R+2,2 . . . νC−R+2,R

...
...

. . .
...

νC,1 νC,2 . . . νC,R

⎞
⎟⎟⎟⎟⎠ (9)

in which nT denotes the total number of moles, xi is the mole
fraction of component i, and nref and xref are row vectors of
dimension R denoting number of moles and mole fractions of
the R reference components, respectively. Eq. (3) depends upon
the equilibrium constants for each reaction. Using Eqs. (3)–(9),
the Gibbs energy without constraints becomes:

G = G(T, P, n̂1, n̂2, . . . , n̂C−R) (10)

Fig. 1. (�mĝ/RT )–X1 plot showing similar behavior as an unconstrained Gibbs
energy of mixing.

The unconstrained, transformed molar Gibbs energy is:

ĝ = G

n̂T

= G/nT[
1 − νT

T (Vref)−1xref
] = g[

1 − νT
T (Vref)−1xref

]
(11)

where g is the molar Gibbs energy. Then, we can apply normal
thermodynamics relationships to Eq. (10) For a binary system
in the transformed mole fractions (C − R = 2), we can use:

ĝ = X1µ̂1 + X2µ̂2 with µ̂i =
(

∂n̂T ĝ

∂n̂i

)
T,P,n̂j=i

(12)

to determine the phase compositions at constant pressure and
temperature. The total differential of the transformed Gibbs
energy at constant pressure and temperature is:

dĝ = µ̂1 dX1 + µ̂2 dX2 (13)

and the derivative with respect X1 is:(
∂ĝ

∂X1

)
T,P

= µ̂1 + µ̂2
dX2

dX1
= µ̂1 − µ̂2 (14)

then

X1

(
∂ĝ

∂X1

)
T,P

= X1µ̂1 − X1µ̂2 = X1µ̂1 − (1 − X2)µ̂2

= X1µ̂1 + X2µ̂2 − µ̂2 = ĝ − µ̂2 (15)

At equilibrium, the transformed chemical potential is equal in
each phase, therefore:

ĝα − Xα
1

(
∂ĝ

∂X1

)α

T,P

= ĝβ − X
β
1

(
∂ĝ

∂X1

)β

T,P

(16)

but from Eq. (14), the orthogonal derivative is equal in each
phase at equilibrium indicating that a tangent line exists that
touches the curve ĝ versus X1 at Xα

1 and X
β
1 , as shown in Fig. 1.

Then Eq. (16) becomes:

ĝα − ĝβ −
(

∂ĝ

∂X1

)α

T,P

(Xα
1 − X

β
1 ) = 0 (17)
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