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A variational field theory for solutions of charged, rigid particles
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Abstract

A general field theoretic formalism is developed for dealing with solutions of particles with rigid charge distributions. Combined with the mean-
field approximation, the resulting theory extends the Poisson–Boltzmann equation to incorporate the presence of structured ions (e.g., uniformly
charged rods or disks). When combined with a first-order variational approximation, the resulting theory, in the low density limit, is a generalization
of the Debye–Hückel theory to extended charge distributions and reduces to the standard expressions when applied to point charges. A first-order
variational theory is applied to solutions of uniformly charged disks and to solutions of uniformly charged disks with a neutralizing ring charge to
examine the influence of electrostatic interactions on the isotropic-nematic transition.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In everyone’s life, there are a few people who have a pro-
found impact on the way one thinks. For me, Prof. Prausnitz
is one of these people. The time I spent working with him was
a time where I was flooded with new thoughts and ideas for
research. Every other week or so, he would leave interesting
articles on my desk—not just current research work but also
“classic” papers—to keep me thinking. Conversations with him
during our weekly research meetings easily flowed between ther-
modynamics, history, opera, art, literature, and current events.
He is a true academic, who sought and respected knowledge in
any field. He made me realize that the “technical” work we do is
never truly isolated from other aspects of our lives. The designs
we produce, experiments we devise, or the theories and models
that we create are a consequence of our own experiences, bi-
ases, and personality. Engineering is fundamentally a creative
subject.

Many colloidal and biological systems contain large, charged
particles (e.g., proteins, DNA, or micelles) and electrolytes.
Electrostatic interactions play a major role in determining the
structure and thermodynamic properties of these systems. Most
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of our current understanding of the role of electrostatic inter-
actions comes from the Poisson–Boltzmann equation [1,2]. Al-
though the Poisson–Boltzmann equation has been quite suc-
cessful in describing many aspects of these interactions, there
are many phenomena (e.g., overcharging, charge inversion, like-
charge attraction, and polyelectrolyte collapse) that it cannot de-
scribe, even qualitatively, because it does not account for elec-
trostatic correlations [3–6].

Because of the importance of correlation effects, there has
been a lot of work on trying to incorporate their influence into the
Poisson–Boltzmann equation. Some of these approaches include
the modified Poisson–Boltzmann theory [7], integral equation
theory such as the mean-spherical approximation [8] and the
hypernetted-chain approximation [9], density functional theory
[10], as well as many others.

The common feature of these theories is that they focus on
the charged particles in the system and the correlations between
them, although they differ in the manner in which these correla-
tions are approximated. An alternate perspective is not to focus
on the particles in the system, but rather to consider the electric
potential and its variations (which are due to the thermal motion
of the charged particles). This field theoretic approach has al-
ready been developed and applied [11–16] to a wide variety of
electrolyte problems.

If fluctuations of the electric potential are neglected (i.e., the
mean-field approximation), the field theory reduces [13,17] to a
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generalized version of the Poisson–Boltzmann equation, which
may include non-electrostatic effects such as excluded-volume
interactions. When the effects of fluctuations are relatively small,
methods, such as the loop expansion or the variational perturba-
tion method, are available to provide systematic improvements
upon the mean-field approximation. Other expansion procedures
have also been recently developed [18,19] which are accurate in
situations where the fluctuations of the electric potential are ex-
tremely strong.

Most applications of the field theoretic approach to elec-
trolyte solutions has been to systems containing point charges or
spherically symmetric ions. Systems that include particles with
non-spherical charge distributions (e.g., charged rods, disks, or
helices) can exhibit interesting phenomena that are not possible
for spherically symmetric particles, such as liquid crystalline
phases, bundle formation, etc. In this work, a field theoretic for-
malism is developed to examine the properties of solutions of
particles with rigid charge distributions. These types of systems
occur in a wide variety of engineering applications, such as in
protein purification and the design of home, personal, and health
care products (e.g., paints, detergents, shampoos, etc.).

The remainder of the paper is organized as follows. In Sec-
tion 2, the functional integral formulation of the grand partition
function, for a system composted of particles with rigid charge
distributions, is presented. Then in Section 3, two different ap-
proximation methods for evaluating the grand partition func-
tion are introduced: (i) the mean-field theory, and (ii) the varia-
tional method. The relationship between both these theories and
the Poisson–Boltzmann equation is discussed. The simplifica-
tion of the formalism in the case of translationally invariant and
isotropic systems is examined in Section 4, where the relation-
ship to the Debye–Hückel theory is demonstrated. The applica-
tion of the theory to investigate the isotropic-nematic transition

of solutions of charged disks is presented in Section 5. Finally,
Section 6 summarizes the main points of this paper and discusses
areas for future work.

2. Development of the general formalism

In this section, a field theory formulation of the statistical me-
chanics of a solution of rigid, charged particles is developed. The
particles are assumed to be immersed in a continuum dielectric
constant which varies in space according to ε(r). Also, located
throughout the system is a fixed, immobile charge distribution
�(r) (e.g., due to a charged surface).

Particles of type α are at a fixed chemical potential µα, and
acting on each particle is an external potential uα(r,�). The
particles interact with each other through an electrostatic field,
which has a total energy Eelec . The particles also interact with
each other through non-electrostatic interactions, with potential

Eref. The grand partition function ZG of total volume V and
temperature T is given by [20]

ZG[γ,�] =
∞∑

N1=0

. . .

∞∑
NM=0

∏
ν

1

Nν!�
3Nν
ν

×
∫ ∏

τt

drτt d�τt e−βEelec−βEref+
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γα(rα,k,�α,k)

(1)

where β = 1/(kBT ), kB is the Boltzmann constant, Nα is the
number of particles of type α, rα,k is the position of the kth point
charge of type α, �α,k is its orientation,�α is the thermal wave-
length of an ion of type α, and γα(r,�) = β[µα − uα(r,�)].
The integration over the orientation � of a particle is given ex-
plicitly by∫

d� →
∫ π

0

sin θ dθ
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∫ 2π

0

dϕ

2π

∫ 2π

0

dψ

2π

where θ, ϕ, and ψ are the Euler angles that denote the particle
orientation.

Consider a rigid, charged particle of type α that is located
at the origin. When the particle is in a reference orientation,
the location of a particular segment s of the particle is given
by δRα(s), which characterizes the displacement of the segment
from the origin; the charge density at this location is given by
qα(s). The charge distribution Qα(r,�) of the particle when it
is in the orientation � is

Qα(r,�) =
∫

dsqα(s)δ(r − A(�) · δRα(s))

where A is the rotation matrix, which describes the transforma-
tion of the particle from its reference orientation to the orienta-
tion �. One example of the rotation matrix is [21]

A(�) = A(θ, φ, ψ) =

⎛
⎜⎝

cos ψ cos φ − cos θ sin φ sin ψ cos ψ sin φ + cos θ cos φ sin ψ sin θ sinψ

− sin ψ cos φ − cos θ sin φ cos ψ − sin ψ sin φ + cos θ cos φ cos ψ sin θ cos ψ

sin θ sin φ − sin θ cos φ cos θ

⎞
⎟⎠ (2)

In the case of a point charge of magnitude qα, the charge distri-
bution is given by:

Qα(r,�) = qαδ(r)

The charge distribution for a uniformly charged, rigid rod of
length l and overall charge qα is given by

Qα(r,�) = qα

∫ 1

0
dsδ

(
r − n̂(�)l

(
s− 1

2

))
(3)

where n̂ is a unit vector that points parallel to the orientation of
the rod, and s denotes the distance along the rod.

The overall charge density Q(r) of the system is given by

Q(r) =
∑
α,k

Qα(r − rα,k,�α,k) +�(r) (4)

where rα,k is the position of the kth particle of type α,�α,k

denotes the orientation of the kth particle of type α, and �(r) is
a fixed charge density.
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