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Abstract

Common classical expressions for the molar excess Gibbs energy of mixinggE do not contain a contribution from composition fluctuations
that are significant in the vicinity of the plait point for a ternary system. We propose a correction togE based on reasonable phenomenological
assumptions. This correction requires three ternary constants, but two are obtained from stability relations provided that we know the compositionof
the plait point. While the method proposed here is not predictive, it provides a consistent thermodynamic procedure for calculating the liquid–liquid
phase diagram of a ternary system with a plait point. The proposed method is illustrated for three ternaries. When calculations are based on the
classical expressions forgE alone, calculated results are in serious disagreement with experiment near critical conditions. Inclusion of the proposed
correction forgE provides dramatic improvement.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For typical separation by extraction, rational process design
calculations require multicomponent liquid–liquid equilibria
(LLE). In the simplest extraction system, we have three com-
ponents: two nearly immiscible solvents (1 and 2) and a solute
(3) that we want to transfer from one solvent to the other. We
present here a thermodynamic procedure for calculating LLE in
a ternary system with a plait point. The goal of this procedure is
to provide reliable representation of LLE near-to and far-from
critical conditions that prevail near and at the plait point. Our pro-
cedure is similar to that proposed by de Pablo[1], but, because
we only use algebraic equations, it is much more convenient for
engineering-oriented calculations.

2. Theoretical framework

As illustrated inFig. 1, it is convenient to show ternary exper-
imental LLE data in an equilateral triangle diagram where the
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binary 1–2 is represented by the horizontal bottom edge and
solute (3) is represented by the upper apex. The curved line
shows the connodal curve that separates the one-phase region
(outside) from the two-phase region (inside). The ends of a tie-
line give the compositions of two coexisting liquid phases at
equilibrium. Somewhere in the top region of the connodal curve,
we have a plait point where the length of tie-line has shrunk to
zero, that is, when the two liquid phases become identical. As
discussed in numerous textbooks (e.g. Prausnitz et al.[2]), we
can readily calculate the connodal line and all tie-lines provided
that we have available an expression for the molar excess Gibbs
energygE of the ternary mixture at the temperature and pressure
of interest;gE is usually given as a function of mole fractions
x1, x2 andx3. The well-known equations of equilibrium are
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where, at equilibrium, prime (′) indicates one liquid phase and
double prime (′′) indicates the other. Activity coefficientγ i is
obtained fromgE according to

RT ln γi =
(

∂nTgE

∂ni

)
T,P,nj

(2)

0378-3812/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.fluid.2005.12.002



68 B.H. Lee et al. / Fluid Phase Equilibria 240 (2006) 67–72

Fig. 1. Ternary Liquid–Liquid Equilibria (LLE). The tie lines connect the com-
positions of two liquid phases at equilibrium. (�) Plait point.

whereni is the number of moles of componenti, nT the total
number of moles (nT =�ni) andRT has the usual meaning. To
obtain a solution to the three equations of equilibrium, we also
use the obvious relations

xi = ni

nT
, x′

1 + x′
2 + x′

3 = x′′
1 + x′′

2 + x′′
3 = 1 (3)

The essential key to ternary LLE calculation lies in the
expression for ternarygE. To minimize experimental effort, it
is attractive to use an expression for ternarygE that uses only
adjustable binary parameters, that is, parameters obtained from
experimental data for the three binaries 1–2, 1–3 and 2–3. As
discussed in standard textbooks, a simple way to achieve that
attractive goal is to assume

gE(x1, x2, x3) = gE
12(x1, x2) + gE

13(x1, x3) + gE
23(x2, x3) (4)

wheregE
ij is the molar excess Gibbs energy of theij binary.

Another common simple approximation is given later in Eq.
(18).

Typical expressions forgE of a binary system contain two
or three adjustable binary parameters. For the 1–2 binary, these
parameters are fixed from experimental data for mutual solubil-
ities (solubility of 1 in 2, and solubility of 2 in 1). For the 1–3
and 2–3 binaries, whenever possible, the adjustable parameters
are obtained from binary vapor–liquid equilibrium (VLE) data,
all at (or near) the temperature of interest. Because at normal
conditions the properties of liquids are not sensitive to changes
in pressures, we do not here consider the effect of pressure on
gE.

The large advantage of Eq.(4) is that, in principle, no ternary
experimental data are required. Because experimental data for
binary systems are much more plentiful then experimental data
for ternary systems, in principle, Eq.(4) can be used to predict
ternary liquid–liquid equilibria from binary data alone.

However, such predictions are rarely successful, in part,
because reduction of binary VLE data cannot yield a unique
set of binary parameters; given the inadequacy of the model for
gE and, given experimental uncertainties, many sets of binary

parameters can equally well represent the experimental VLE
data for a binary system. When calculating ternary LLE using
Eq. (4), which sets of binary parameters shall we use? Regret-
tably, that choice can significantly affect calculated ternary LLE.
In practice, therefore, it is usually not possible to predict ternary
LLE from binary data alone.

However, there is another, more fundamental problem that
makes thermodynamic calculation of ternary LLE difficult.
Common expressions forgE have an inherent deficiency: they are
based on mean-field models that neglect fluctuations in compo-
sition. In typical cases, at conditions remote from the plait point,
fluctuations are insignificant. However, the plait point is a critical
point where the two equilibrated liquid phases become identical;
in the vicinity of a critical point, composition fluctuations con-
tribute to the excess Gibbs energy. Because these fluctuations are
ignored in all common models forgE, calculated ternary LLE
that give good results far-from the plait point are often in serious
error near the plait point, regardless of what binary parameters
are used. In a typical calculation that ignores composition fluc-
tuations, the two-phase region is too large; the calculated mole
fractionxc

3 at the plait point is likely to be much larger than that
found experimentally. While it is possible to choose six binary
parameters that correctly reproduce the experimental plait point,
that choice yields poor (often very poor) results remote from the
plait point.

We propose here a semi-empirical expression forgE that
includes contributions from composition fluctuations. This
expression is not predictive. In addition to six binary parameters
(preferably obtained from binary data), we require the exper-
imental coordinates of the plait point. The advantage of our
procedure is that it provides a thermodynamic self-consistent
method for representing ternary LLE data.

3. Contribution of composition fluctuations to the
excess gibbs energy

For the ternary mixture we write

gE = gE
cl + gE

co (5)

where cl stands for classical and co stands for correction. ForgE
cl

we use Eq.(4) with all gE
ij given by any one of the well-known

models such as Van Laar, NRTL or UNIQUAC. ForgE
co we pro-

pose a second-order Taylor-series expansion in mole fractions
x1 andx2.
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whereδ indicates fluctuation and the bar indicates a time average.
The derivative with respect tox1 is taken at constantx2 and the
derivative with respect tox2 is taken at constantx1. The first-
order derivatives in the Taylor expansion vanish because, by
definition,δx1 andδx2 are zero. In a ternary system we assume
thatδx1 andδx2 are not correlated, that is,δx1 · δx2 = δx1 · δx2.
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