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a b s t r a c t

Besides the often-quoted complexity of cellular networks, the prevalence of uncertainties about
components, interactions, and their quantitative features provides a largely underestimated hall-
mark of current systems biology. This uncertainty impedes the development of mechanistic math-
ematical models to achieve a true systems-level understanding. However, there is increasing
evidence that theoretical approaches from diverse scientific domains can extract relevant biological
knowledge efficiently, even from poorly characterized biological systems. As a common denomina-
tor, the methods focus on structural, rather than more detailed, kinetic network properties. A dee-
per understanding, better scaling, and the ability to combine the approaches pose formidable
challenges for future theory developments.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is a key concept of systems biology to iteratively combine
large-scale experimental analysis with mathematical modeling in
order to eventually elucidate how biological systems operate [1].
This concept, per se, is not new – similar approaches have been fol-
lowed for decades in physiology and theoretical biology [2].
Unprecedented developments of high-throughput, large-scale
experimental technologies – such as genomics, proteomics, meta-
bolomics – however, have opened realistic opportunities for sys-
tem-wide analyses in biology, at least at the cellular level.
Mathematical modeling can employ this data to generate qualita-
tive or quantitative predictions and, thereby, evaluate biological
hypotheses, suggest new experiments for validation, and ulti-
mately increase our systems-level understanding [3]. Transcrip-
tional regulatory networks provide one example where this
combination of experimentation and modeling has been particu-
larly successful [4].

The complexity of cellular systems constitutes an obvious chal-
lenge for mathematical modeling in systems biology. For instance,
it is unclear how detailed dynamic models of small-scale systems
could eventually be scaled to entire cells, or joined with coarser-
grained but large-scale models [4]. Uncertainty is another impor-

tant and less appreciated factor that requires new theory develop-
ment to increase the power of mathematical models as systems
analysis tools. Probabilistic models cope with uncertainty by de-
sign, but they often do not respect first principles such as mass
conservation, do not cover dynamic processes, and yield only lim-
ited insight into mechanistic detail. Hence, it is important to con-
sider the effect of uncertainty on mechanistic models.

Uncertainties fall into two broad categories [5]. Aleatoric uncer-
tainty stems from the inherent randomness in the behavior of the
system under examination. In biology, for example, noise in gene
expression induces uncertainty in the model output. Since the
noise stems from physical principles, this uncertainty cannot be
avoided and needs to be addressed by stochastic analysis. This
highly active research area is summarized in recent reviews [6–
8]. Here, we focus on the second type of uncertainty, epistemic
uncertainty, which results from our lack of knowledge on the sys-
tem. In current mechanistic mathematical models of biological sys-
tems, epistemic uncertainty is profoundly present due to practical
limitations, such as lack of understanding of the underlying mech-
anisms, incomplete coverage and measurement errors in various
modeling quantities and, most commonly, parameters derived
from noisy or incoherent data sets. A recent study of coverage in
shotgun proteomics illustrates such technical limitations quantita-
tively [9] for one type of data required for mathematical modeling.

For future perspectives, consider the example of budding yeast
as a best-case scenario. S. cerevisiae is arguably the most intensely
studied eukaryotic model organism of ‘manageable’ complexity.
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Yet, ten years after sequencing the genome in 1996, roughly 1/6 of
the organism’s genes still remained un-annotated [10], and only
very recently, it was possible to establish growth phenotypes for
all individual genes using chemical genomics approaches [11].
Hence, ever accumulating perfect quantitative knowledge on bio-
logical systems for epistemic uncertainty to cease currently seems
unrealistic.

Incomplete knowledge affects mathematical models based on
first principles in different ways. Here, we consider ordinary differ-
ential equation (ODE) models derived from mass balances of n
individual components in a biochemical network with r reactions.
The general form of such an ODE system is:

dcðtÞ
dt
¼ N � vðcðtÞ;uðtÞ;kÞ; cðt0Þ ¼ c0 ð1:1Þ

with the n � 1 vector of time-dependent concentrations c(t), the
n � r stoichiometric matrix N, and the r � 1 vector function of reac-
tion rates – or fluxes – v(�). The fluxes depend on the system state
c(t), on potentially time-varying inputs u(t), and on kinetic param-
eters k such as affinity constants. Finally, c0 denotes the initial state
of the system, for instance, absolute protein concentrations. Uncer-
tainty enters in the form of unknown or poorly estimated parameter
values k and initial conditions c0. Moreover, missing or incorrect
reactions affect the model structures, namely stoichiometries N
and reaction rate laws v(�). The resulting nested model uncertainties
are difficult to handle [12].

To cope with the combination of complexity and uncertainty in
biological systems, it is important to realize that mathematical
models need to be adapted to the phenomena of interest as well
as to the scientific questions they are intended to answer. Or, as
a lesson from other complex systems: ‘‘Don’t model bulldozers
with quarks” [13]. In particular, it is not always necessary to spec-
ify ODE-based models completely. Using advanced computational
methods for exploiting the existing knowledge to the largest pos-
sible extent provides a pragmatic approach to gain biological
knowledge and to reduce the experimental efforts. However, it
poses important theory challenges. Here, we discuss methods that
can potentially cope with increasing levels of uncertainty; they
originate from different long-term theory developments that start
to converge.

2. Structural network analysis

Network structures, especially the stoichiometries of biochem-
ical reactions, are relatively well-characterized and therefore suit-
able starting points to analyze the largely unknown relationships
between structure, function and control in complex cellular
networks.

2.1. Concepts

Horn and Jackson were the first to study the effects of stoichi-
ometric coupling in (chemical) reaction networks on their behavior
[14]. They realized that – even without knowing parameter values
k and component concentrations c – the stoichiometry imposes
important constraints on network fluxes. Considering only steady
states and neglecting the dynamics, Eq. (1.1) simplifies to:

dc
dt
¼ 0 ) N � v ¼ 0 ð1:2Þ

Now, the space of feasible fluxes v is only determined by properties
of the stoichiometric matrix N and potentially other constraints on
v such as reaction reversibilities and capacities as illustrated in
Fig. 1. The approach rapidly gained importance for biology after
Palsson and colleagues proposed the flux balance analysis (FBA)
method in 1992. FBA determines a specific flux distribution in a

metabolic network by additionally considering optimality of, for
example, biomass production [15]. The method and its extensions
have found numerous applications in biology to analyze specific
properties and behaviors of genome-scale metabolic networks;
see [16,17] for recent reviews. However, it might be even more
rewarding to characterize all possible behaviors of a network, which
is the domain of metabolic pathway analysis.

2.2. Metabolic pathways

Formal metabolic pathways – as opposed to conceptual ‘glycol-
ysis’, ‘TCA cycle’, etc. – have well-defined mathematical structures.
Two such concepts are elementary flux modes (EFMs) and extreme
pathways (EPs); they both originate from Clarke’s early work on
convex analysis of stoichiometric networks [18,19]. Since EFMs
and EPs are closely related, we only consider EFMs in the following.
Importantly, EFMs correspond to minimal (that is, non-decompos-
able) subnetworks that can operate a network at steady state while
fulfilling all constraints that are imposed by reaction stoichiome-
tries and reversibilities. They open up a constructive inroad for
characterizing network behavior: all feasible flux distributions,
and only those, are obtained by non-negative (convex) combina-
tions of EFMs (see [20] for technical details). Hence, pathway anal-
ysis, in principle, allows one to comprehensively investigate the
space of all states of (metabolic) networks that are meaningful
for the cell.

Early applications of EFM analysis considered small-scale net-
works such as parts of canonical monosaccharide metabolism,
thereby recovering text book pathways as well as proposing new
network operation modes [21]. The first larger-scale analysis of
Escherichia coli central metabolism showed the potential of EFM
analysis for characterizing phenotypes and robustness of metabolic
networks [22]. Primarily due to increased capabilities for comput-
ing EFMs, applications are now becoming possible for genome-
scale networks. Recent studies indicated remarkable variability of
fluxes within a narrow region of growth optimality [23], and
helped uncover optimal, but rather counter-intuitive modes of net-
work operation [24].

Importantly, large-scale analyses showed that focusing on ‘core
metabolism’, while neglecting the peripheral network, can be very
misleading [23,25]. This implies important challenges for EFM-
based network analysis. First, it is not yet possible to analyze net-
works larger than �300 reactions because of the high computa-
tional demands for determining EFMs. High-performance
computing approaches and parallelization are options for further
scaling. In addition, already now, EFM computations result in up
to 107 pathways for large networks. Even simple statistical analysis
such as determining the distribution of path lengths thus becomes
non-trivial, and more advanced methods for clustering and other
analyses at this scale are needed [23].

2.3. Network structure and regulation

While structural network analysis traditionally focuses on met-
abolic networks, several theories and computational methods have
been proposed to infer (transcriptional) regulatory network struc-
tures and behavior from metabolic network structures. This is dif-
ferent from designing hybrid models that abstractly represent
known genetic control mechanisms, for instance, via Boolean logic
to more accurately predict the metabolic phenotype [26]. Reverse-
engineering of the control network, at least in microorganisms, ap-
pears feasible because the control structures are sparse – only few
metabolites directly control each regulator and vice-versa – and
hierarchical [27]. In addition, there is increasing evidence that met-
abolic networks operate in a limited number of dominant func-
tional modes in steady-state. Additional assumptions on optimal
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