





journal homepage: www.FEBSLetters.org

# Impact of peptidoglycan O-acetylation on autolytic activities of the *Enterococcus faecalis N*-acetylglucosaminidase AtlA and *N*-acetylmuramidase AtlB

Aurélie Emirian <sup>a,b,c,1</sup>, Sophie Fromentin <sup>a,b,c,1,2</sup>, Catherine Eckert <sup>a,b,c,3</sup>, Françoise Chau <sup>d</sup>, Lionel Dubost <sup>e,f</sup>, Muriel Delepierre <sup>g</sup>, Laurent Gutmann <sup>a,b,c,h</sup>, Michel Arthur <sup>a,b,c</sup>, Stéphane Mesnage <sup>a,b,c,\*</sup>

<sup>a</sup> Centre de Recherche des Cordeliers, INSERM U872, 75006 Paris, France

<sup>b</sup> Université Pierre et Marie Curie, UMR-S 872, 75006 Paris, France

<sup>c</sup> Université Paris Descartes, UMR-S 872, 75006 Paris, France

<sup>d</sup> EA3964, Faculté de Médecine Xavier Bichat, Université Paris 7, 75018 Paris, France

<sup>e</sup> Muséum National d'Histoire Naturelle, USM0502, 75005 Paris, France

<sup>f</sup> CNRS, UMR8041, Plateforme de Spectrométrie de Masse et de Protéomique du Muséum, Département de Recherche Développement et Diversité Moléculaire, 75005 Paris, France <sup>g</sup> RMN des Biomolécules, CNRS URA 2185, Institut Pasteur, 75015 Paris, France

<sup>h</sup> AP-HP Hópital Européen Georges Pompidou, Paris, France

### ARTICLE INFO

Article history: Received 23 July 2009 Revised 10 August 2009 Accepted 10 August 2009 Available online 15 August 2009

Edited by Miguel De la Rosa

Keywords: Autolysin Peptidoglycan O-acetylation Enterococcus faecalis

#### 1. Introduction

### ABSTRACT

Autolysins are potentially lethal enzymes that partially hydrolyze peptidoglycan for incorporation of new precursors and septum cleavage after cell division. Here, we explored the impact of peptidoglycan *O*-acetylation on the enzymatic activities of *Enterococcus faecalis* major autolysins, the *N*-acetylglucosaminidase AtlA and the *N*-acetylmuramidase AtlB. We constructed isogenic strains with various *O*-acetylation levels and used them as substrates to assay *E. faecalis* autolysin activities. Peptidoglycan *O*-acetylation had a marginal inhibitory impact on the activities of these enzymes. In contrast, removal of cell wall glycopolymers increased the AtlB activity (37-fold), suggesting that these polymers negatively control the activity of this enzyme.

© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Peptidoglycan is essential for maintaining bacterial cell shape and integrity [1]. This macromolecule is a heteropolymer composed of disaccharide units alternating *N*-acetylglucosamine and *N*-acetylmuramic acid cross-linked by short stem peptides [2,3]. To ensure the insertion of new peptidoglycan precursors and septum cleavage after cell division, peptidoglycan is partially hydrolyzed by potentially lethal enzymes called autolysins. Three autolysins have been characterized in *Enterococcus faecalis*: one *N*-acetylglucosaminidase, AtIA, and two highly similar *N*-acetylmuramidases, AtIB and AtIC [4,5]. AtIA is required for efficient hydrolysis of the septum after cell division. AtIB can act as a surrogate for AtIA and also participates with AtIA in peptidoglycan turn-

<sup>1</sup> These two authors contributed equally to this work.

over. No specific contribution of AtlC to peptidoglycan metabolism was detected [5]. To prevent cell lysis during growth, the enzymatic activities of autolysins must be tightly controlled and synchronized with the activity of glycosyltransferases and D,D-transpeptidases, which ensure peptidoglycan polymerization. Peptidoglycan de-N-acetylation and O-acetylation as well as covalently bound cell wall glycopolymers (CWG), have been suggested to play a role in autolysin control [3]. Recently, several genes encoding peptidoglycan de-N-acetylases [6-9] and O-acetylases [10–12] have been identified in Gram-positive bacteria. Both peptidoglycan de-N-acetylation and O-acetylation were found to inhibit peptidoglycan digestion by lysozyme, a eukaryotic N-acetylmuramidases enzyme produced in response to bacterial infection. Peptidoglycan de-N-acetylation was also demonstrated to inhibit the activity of AcmA, the major N-acetylglucosaminidase of Lactococcus lactis [8]. Based on mild-base treatment of cell wall preparations, zymogram analyses suggested that O-acetylation could modulate autolysin activities in E. faecalis [13].

In this study, we compared the enzymatic activity of recombinant AtlA and AtlB on cell walls with variable peptidoglycan *O*acetylation levels. We also prepared pure peptidoglycan by treating cell walls with hydrofluoric acid. The substrates generated

<sup>\*</sup> Corresponding author. Address: INSERM U872-LRMA, Centre de Recherches des Cordeliers, Université Paris 6, 15 rue de l'Ecole de Médecine, 75254 Paris Cédex 06, France. Fax: +33 1 43 25 68 12.

E-mail address: stephane.mesnage@crc.jussieu.fr (S. Mesnage).

<sup>&</sup>lt;sup>2</sup> Present address: Laboratoire Aragó, Equipe Physiologie Environnementale, 66650 Banyuls sur Mer Cedex, France.

<sup>&</sup>lt;sup>3</sup> Present address: Faculté de médecine Saint Antoine, 75012 Paris, France.

were used to assay the activity of recombinant His-tagged AtlA and AtlB in vitro. We found that O-acetylation had only a marginal impact on autolytic activities. In contrast, our results suggested that *E. faecalis* cell wall glycopolymers (CWG), including teichoic acids, a polysaccharide capsule and a rhamnopolysaccharide [14] are one of the cell wall properties involved in the negative control of autolytic activities.

### 2. Materials and methods

### 2.1. Bacterial strains, and growth condition

*E. faecalis* JH2-2 and OG1RF are plasmid-free laboratory strains [15,16]. *E. faecalis* JH2-2 $\Delta$ oatA harbors a deletion in the gene encoding the *O*-acetyl transferase OatA (EF0783 at www.tigr.org). *E. faecalis* OG1RF(pOat) is an OG1RF derivative expressing the oatA gene from JH2-2. Bacteria were grown at 37 °C in Brain Heart Infusion (BHI) broth or agar (15 g/l) (Difco Laboratories). Expression plasmids pML118 and pEF355 were used to produce recombinant His-tagged mature AtlA [4] and AtlB [5] from *E. faecalis* V583, respectively, as previously described. When required, the growth medium was supplemented with 150 µg/ml of ampicillin, 60 µg/ml of spectinomycin or 200 µg/ml of erythromycin for *Escherichia coli*. Spectinomycin and erythromycin were used at 120 and 30 µg/ml for *E. coli* and *E. faecalis*, respectively.

#### 2.2. Plasmid construction for gene disruption and complementation

Disruption of oatA was carried out by allelic exchange as previously described [17] using plasmid pGHHoat. To construct pGHHoat, two fragments of JH2-2 genomic DNA were amplified with primers EF0783\_1 (5'AAACCATGGATCAGACAGCAAATAGCAAGAA A3') and EF0783\_2 (5'GGGTAGAACGTCTTGGCTTTCACTCGGTCAGA CCGCGCTTACGA ACAAAGCGTTCC3'), and EF0783\_3 (5'TG-ACCGAG TGAAAGCCAAGACGTTCTAC CCACACAACTCACACAGAGC-AAG3') and EF0783\_4 (5'AAACTCGAGCTACTGTA AAATTTTCTCCG CG3') using Vent DNA polymerase (New England Biolabs). The two PCR products were fused by the strand overlap extension method [18]. After purification, the final PCR product was cut with Xhol and cloned into the thermosensitive plasmid pGhost9 [19] digested by Smal and Xhol. The resulting plasmid pGHHoat contains a 1.06 kbp DNA fragment encoding an inactive oatA locus due to a 831 bp deletion within the oatA open reading frame. To complement the low level of O-acetylation in OG1RF, competent OG1RF cells were electroporated with plasmid pOat obtained as follows: the complete open reading frame of *oatA* was PCR-amplified using JH2-2 genomic DNA as a template, Vent DNA polymerase (New England Biolabs) and oligonucleotides EF0783\_1 (see above) and EF0783\_5 (5'AAAGGATCCCTGTAAAATTTTCTCCGCG3'). The PCR fragment was cut with NcoI and BamHI and cloned into the replicative vector pJEH11 [20] to generate pOat.

### 2.3. Cell wall purification, hydrofluoric acid treatment, and muropeptide analysis

Bacteria were grown in 500 ml of BHI broth at 37 °C to an OD<sub>600</sub> of 0.7. Cell walls (*O*-acetylated peptidoglycan with covalently bound glycopolymers) were obtained by extraction of the bacterial pellet with 14 ml of 4% SDS at 100 °C for 30 min followed by pronase and trypsin digestion as previously described [21]. To obtain pure peptidoglycan, cell walls were treated with 48% (m/v) hydrofluoric acid (HF) at 4 °C for 96 h and repeatedly washed with distilled water. This chemical treatment removes cell wall glycopolymers (CWG) covalently bound to peptidoglycan via an acid-labile phosphodiester bond at the C6 group of muramic acid

[22]. To allow muropeptides analysis, cell walls were digested with mutanolysin, reduced with NaBH<sub>4</sub> and separated by reverse-phase high-performance liquid chromatography (rp-HPLC) as previously described [21].

### 2.4. NMR analysis of O-acetylated muropeptides

HPLC-purified muropeptides D and G were lyophilized and dissolved in D<sub>2</sub>O. NMR spectra were run at 298 K on a Varian Innova spectrometer operating at a proton frequency of 600 MHz. Structural analysis was conducted using standard methods such as correlation spectroscopy, relayed COSY, total correlation spectroscopy (TOCSY), edited gradient selected heteronuclear single-quantum correlation (egHSQC), as well as gradient selected heteronuclear multiple bond correlation (gHMBC). All spectra were processed and plotted using VNMR software (Varian, Palo Alto, USA).

### 2.5. Determination of AtlA and AtlB specific activities towards purified peptidoglycan

Cell walls or pure peptidoglycan were resuspended at OD<sub>450</sub> of 0.6 in 50 mM phosphate buffer (pH 7.5 for AtlA or 6.0 for AtlB), and incubated at 37 °C with recombinant purified His-tagged AtlA [4] or AtlB [5] from *E. faecalis* V583. Peptidoglycan hydrolysis was measured by following the decrease in OD<sub>450</sub>, typically over 2–10 min. The specific activities of AtlA and AtlB were expressed in  $\Delta$ OD<sub>450</sub>/min/µmol of enzyme [23]. Specific activities were determined using distinct batches of cell wall preparations.

#### 2.6. Zymographic analyses

Crude extracts were obtained from exponentially growing cells  $(OD_{600} \text{ of } 0.7)$ . A cell pellet corresponding to 50 ml of culture was resuspended in 1 ml of Tris 20 mM (pH 7.5), mixed with an equal volume of glass beads (0.17–0.18 mm), and mechanically broken with a Fastprep machine (Qbiogene; 5 cycles of 30 s at maximum speed with 2 min pauses between each round to avoid heating). Proteins in *E. faecalis* JH2-2 crude extracts (20 µg) were separated electrophoretically on a 12% SDS–polyacrylamide gel containing autoclaved cells (OD<sub>600</sub> of 5). After electrophoresis, the proteins were renatured by incubating the gel at 37 °C for 4 h in 25 mM Bis-Tris–HCl (pH 6.5) buffer containing 0.1% Triton X-100 and then for 24 h in 25 mM Tris (pH 7.5) buffer containing 0.1% Triton X-100. Lytic activities were visualized as clear bands on the opaque SDS–PAGE gel.

### 3. Results and discussion

### 3.1. Susceptibility of E. faecalis reference strains JH2-2 and OG1RF to autolytic activities

Zymogram experiments were carried out to compare the autolytic profiles of *E. faecalis* JH2-2 crude extracts on autoclaved cells from two reference strain, JH2-2 and OG1RF. Using JH2-2 cells as a substrate, four bands were detected in crude extracts (Fig. 1, lane 1). Two bands at 72 and 62 kDa correspond to the full length and to a C-terminal fragment of the *N*-acetylglucosaminidase AtlA, respectively [4]. The bands at 50 and 47 kDa correspond to the *N*-acetylmuramidases AtlB and AtlC, respectively [5]. Using OG1RF as a substrate, the autolytic profile revealed an increased intensity of AtlA bands and the appearance of several additional minor bands (Fig. 1, lane 2) absent in extracts from a JH2-2 $\Delta$ atlA mutant [5] (data not shown). This result suggested that OG1RF cells were apparently more susceptible than JH2-2 cells to AtlA present in JH2-2 extracts. In addition, we analyzed *E. faecalis* OG1RF crude

Download English Version:

## https://daneshyari.com/en/article/2049795

Download Persian Version:

https://daneshyari.com/article/2049795

Daneshyari.com