
Inferring biomolecular regulatory networks from phase portraits
of time-series expression profiles

Kwang-Hyun Choa,b,*, Jeong-Rae Kimb, Songjoon Baekb, Hyung-Seok Choic, Sang-Mok Chood

a College of Medicine, Seoul National University, Jongno-gu, Seoul 110-799, Republic of Korea
b Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul 151-818, Republic of Korea

c Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-gu, Seoul 151-747, Republic of Korea
d School of Electrical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea

Received 6 February 2006; revised 2 May 2006; accepted 9 May 2006

Available online 22 May 2006

Edited by Robert B. Russell

Abstract Reverse engineering of biomolecular regulatory net-
works such as gene regulatory networks, protein interaction net-
works, and metabolic networks has received an increasing
attention as more high-throughput time-series measurements
become available. In spite of various approaches developed
from this motivation, it still remains as a challenging subject to
develop a new reverse engineering scheme that can effectively
uncover the functional interaction structure of a biomolecular
network from given time-series expression profiles (TSEPs).
We propose a new reverse engineering scheme that makes use
of phase portraits constructed by projection of every two TSEPs
into respective phase planes. We introduce two measures of a
slope index (SI) and a winding index (WI) to quantify the inter-
action properties embedded in the phase portrait. Based on the
SI and WI, we can reconstruct the functional interaction net-
work in a very efficient and systematic way with better inference
results compared to previous approaches. By using the SI, we can
also estimate the time-lag accompanied with the interaction
between molecular components of a network.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The complexity of biological phenomena is primarily caused

by interactions of biochemical components in the underlying

biomolecular regulatory networks at different layers including

gene regulatory networks, protein interaction networks, and

metabolic networks [1,2]. Hence, identification (or reverse

engineering) of the functional interaction structure of a biomo-

lecular network is of pivotal importance if we want to under-

stand the essential principles prevailing the observed complex

phenomena. As more high-throughput time-series measure-

ments become available, various reverse engineering schemes

have been developed to reconstruct the functional interaction

structure from given time-series expression profiles (TSEPs)

[3–5]. For instance, reverse engineering of gene regulatory net-

works from time-series microarray experiments has been get-

ting increased attention although there still remain many

problems to be resolved such as dealing with the dimensional-

ity (i.e., relatively many network nodes but only few measure-

ments available [6]) and computational complexity, and

estimating the unknown time-lags accompanied with the inter-

actions. To tackle such problems, scientists have combined ap-

proaches by making use of sequence information about

binding motifs from databases or designing additional experi-

ments to complement the insufficient information [7–9].

The previous studies for reverse engineering of gene regula-

tory networks include Boolean networks [3,10,11], Bayesian

networks [12–15], dynamic Bayesian networks [16,17], and or-

dinary differential equations (ODEs) based methods [18–21].

The Boolean networks, Bayesian networks, and dynamic

Bayesian networks allow us to infer the relation between net-

work nodes (genes in this case), but we cannot identify the de-

tailed regulatory relation by using these methods without

additional information such as genomic-sequences [22] or deg-

radation rates [23]. On the other hand, ODE based methods al-

low us to investigate underlying regulatory relations in more

detail. Using this method, we can represent the expression level

change of the ith node (xi) in a network with n nodes as fol-

lows:

dxi

dt
¼ fiðx1; x2; . . . ; xnÞ ði ¼ 1; . . . ; nÞ:

Based on this framework, the influence of xj on xi can be rep-

resented by ofi
oxj

. In other words, if ofi
oxj

is positive (negative), xj

activates (inhibits) xi. The common drawback for all of the

previous approaches is however that the computational com-

plexity increases exponentially as the number of network nodes

increases. Instead of solving ODEs, there is another approach

of finding the sign of ofi
oxj

through perturbation of each network

node [24–26], but this requires many perturbation experiments

which is unfeasible for large networks.

We present in this paper a new reverse engineering scheme

that can resolve the previous computational complexity prob-

lem and can be applied to various reverse engineering problems

in a more efficient way. The main idea is to analyze the interac-

tion properties embedded in the phase portrait which is drawn

on a phase plane by projection of two TSEPs. If the given TSEP

is dense in its sampling time intervals and the regulation is

strong enough to be easily captured, we can directly infer the

regulatory relation from the phase portrait. However, as this

is not the case in many practical situations, we further intro-
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duce two measures to quantify the interaction properties and to

systematically infer the underlying regulatory relation: a slope

index (SI) and a winding index (WI). The SI is a measure to

determine the regulatory type (activation or inhibition) and

the WI is for the direction of such regulation. The proposed

scheme can be applied to more general cases whenever the

time-dependent interaction among TSEPs is of importance.

In addition, we can use this scheme to estimate the time-lag

accompanied with the regulation process between two biomo-

lecular components in a network.

The scheme we present is intuitive and very simple. Most of

all, it can be easily implemented with almost negligible compu-

tational complexity. Although the two measures of SI and WI

seem to be similar with the notion of correlation coefficients,

the proposed scheme more clearly explains the underlying

directionality of activation or inhibition than those focusing

only on correlation of distributions without considering the

temporal information of the TSEPs. We illustrate the proposed

scheme with examples of a synthetic gene network and the che-

motactic signaling network of Dictyostelium. In addition, we

show how the proposed scheme can be applied to estimation

of the time-lag accompanied with the regulation process be-

tween two genes through an example of the gene regulatory

network involved in the oxidative stress of Escherichia coli.

2. Materials and methods

If we look at all the TSEPs at the same time, it is difficult to get any
insight about the underlying interaction network as the TSEPs look
just messy. Hence, the main idea of the proposed scheme is to choose
every two TSEPs at a time and to infer the regulatory relation of the
corresponding two nodes by investigating the dynamical characteristic
of their phase portrait. The whole interaction network can be then con-
structed by integrating all these results. To illustrate the idea, let us first
consider a regulatory network composed of only two nodes, x1 and x2,
and assume that there exists a time-invariant regulatory relation. If x1

activates x2, a local maximum (minimum) of x1 is followed by a local
maximum (minimum) of x2 as illustrated in Fig. 1A. On the other
hand, if x1 inhibits x2, a local maximum (minimum) of x1 is followed
by a local minimum (maximum) of x2 as shown in Fig. 1B. If we as-
sume continuous-time expression profiles of two nodes x1 and x2, we
define the phase portrait of these expression profiles as follows:

X 12ðtÞ ¼ ðx1ðtÞ; x2ðtÞÞ:

The phase portrait X12 is a curve on the phase plane spanned by x1 as
x-axis and x2 as y-axis. Note that X12 loses the information about the
influence from any other network nodes due to the projection from the
multi-dimensional space into the two-dimensional phase plane. Thus,
whenever we use this concept of a phase portrait, we implicitly assume
that there is always one dominant node among the multiple nodes
interacting with a given network node. Fig. 1C and D show the phase
portraits of Fig. 1A and B, respectively. Since Fig. 1C still carries most
of the dynamical characteristics of Fig. 1A, we can use Fig. 1C to infer
the regulatory relation between x1 and x2. From this observation, if the
phase portrait X12 of x1 and x2 locates in a positive diagonal direction
and a point on X12 moves counter clockwise (CCW) along with time
elapses like Fig. 1C, we can infer that x1 activates x2. Similarly, if
the phase portrait of x1 and x2 locates in a negative diagonal direction
and a point on X12 moves clockwise (CW) along with time elapses like
Fig. 1D, we can infer that x1 inhibits x2. In addition, we can infer that
x2 activates x1 if X12 locates in the positive diagonal direction and a
point on X12 moves CW; x2 inhibits x1 if X12 locates in the negative
diagonal direction and a point on X12 moves CCW.

For a network with only two nodes, we can easily identify the regu-
latory relation following the above observational rule. However, it
might not be so evident in general for a network with multiple nodes.
To deal with such general cases in a more systematic way, we introduce
two measures, SI and WI in the following. In many practical situa-

tions, we can take measurements for TSEPs instead of the continu-
ous-time expression profiles as we assumed above. In this case, we
can apply the same idea to the reconstructed continuous-time expres-
sion profiles obtained by interpolating the sampled discrete-time points
of TSEPs. In other words, given k discrete-time points (t1, . . . , tk) of
a TSEP, we can construct a phase portrait by connecting each point

by the line segment X 12ðtiÞX 12ðtiþ1Þ ði ¼ 1; . . . ; k � 1Þ. In this case, we

note that the phase portrait can lose the true information about the
expression pattern depending on the number of available discrete-time
points.

Fig. 2A exemplifies a phase portrait of x1 and x2, and Fig. 2B illus-
trates the phase portrait of TSEPs of x1 and x2. Note here that the pat-
tern of Fig. 2B can become similar to that of Fig. 2A by increasing the
number of sampling points. However, since not so many sampling
points are available in most real experiments at present, we need to
consider a phase portrait like Fig. 2B and should infer the underlying
regulatory relation from this. The dynamic pattern of Fig. 2B seems
different from that of Fig. 2A, but we notice that many line segments
in Fig. 2B appear in the same positive diagonal direction as the pattern
of Fig. 2A.

To represent the diagonal distribution (positive diagonal or negative
diagonal) and the moving direction (CW or CCW) in a quantitative
way, we define the measures of SI and WI. For two network nodes
x1, x2, and their TSEPs measured at k even sampling time points,
the SI of x1 and x2 is defined as follows:

SIðx1; x2Þ ¼
1

k � 1

Xk�1

i¼1

sign
x2ðiþ 1Þ � x2ðiÞ
x1ðiþ 1Þ � x1ðiÞ

� �
;

where xj(i) denotes the value of xj at the ith sampling time point and
sign(x) = 1 for x > 0, sign(x) = 0 for x = 0, and sign(x) = �1 for
x < 0 (we exclude those terms of x1(i + 1) � x1(i) = 0). We also define
the WI of x1 and x2 as follows:

WIðx1; x2Þ ¼
1

k � 2

Xk�2

i¼1

signðdðiÞÞ;

where

dðiÞ ¼ det

x1ðiÞ x1ðiþ 1Þ x1ðiþ 2Þ
x2ðiÞ x2ðiþ 1Þ x2ðiþ 2Þ

1 1 1

2
64

3
75

and detA denotes the determinant of a square matrix A. From these
definitions, if the time intervals of a TSEP are uneven, there is possibil-
ity of assigning the same measure value to the ordered pairs of actually
different sampling intervals. To compensate for such cases, we can

x1

x2

x2

x1
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Fig. 1. A and B show two example sets of TSEPs for x1 (solid line) and
x2 (dotted line). C and D illustrate the phase portraits of A and B,
respectively.
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