Differential involvement of ERK₁₋₂ and $p38^{MAPK}$ activation on Swiss 3T3 cell proliferation induced by prostaglandin $F_{2\alpha}$

Andrés Dekanty^a, Sebastián Giulianelli^a, Omar A. Coso^b, Philip S. Rudland^c, Luis Jimenez de Asua^{a,c,*}

^a Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina ^b Laboratorio de Fisiología y Biología Molecular, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina ^c School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom

Received 9 January 2006; revised 20 March 2006; accepted 27 March 2006

Available online 7 April 2006

Edited by Veli-Pekka Lehto

Abstract Prostaglandin $F_{2\alpha}$ (PGF_{2 α}) induces cyclin D₁ expression and DNA synthesis in Swiss 3T3 cells. In order to assess which signaling mechanisms are implicated in these processes, we have used both a pharmacological approach and interfering mutants. We demonstrate that PGF_{2 α} induces extracellular-signal-regulated kinase (ERK₁₋₂) and p38^{MAPK} activation, and inhibition of any of these signaling pathways completely blocks PGF_{2 α}-stimulated DNA synthesis. We also show that ERK₁₋₂, but not p38^{MAPK} activation is required to induce cyclin D₁ expression, strongly suggesting that the concerted action of cyclin D₁ gene expression and other events are required to induce complete phosphorylation of retinoblastoma protein and S-phase entry in response to PGF_{2 α}.

© 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Keywords: Prostaglandin F_{2α}; MAPK; ERK₁₋₂; p38^{MAPK}; Cyclin D1; S-phase

1. Introduction

Mammalian cells proliferation is a highly coordinated phenomenon generally regulated by growth factors and extracellular matrix adhesion [1–4]. Most growth factors bind and activate receptors of tyrosine kinase, triggering the activation of specific signal transduction pathways. These mitogen-induced signals concertedly modulate the initiation of DNA replication and cell division, and this occurs by triggering a cascade of events that ultimately induce the expression of G_1 cyclins, key molecules that regulate crucial cell cycle transitions [5–7]. Several lines of evidence support the idea that cyclin Ds exert the main control on the transition of G_0 to S phase [6,8], and that most growth factors control G_1 phase progression by triggering the expression of cyclin Ds [9,10].

Prostaglandin $F_{2\alpha}$ (PGF_{2 α}) stimulates DNA synthesis and proliferation of cultured Swiss mouse 3T3 cells [11], and is implicated in unrestricted multiplication of transformed cells [12]. Our previous work reveals that several $PGF_{2\alpha}$ -triggered signaling events are required to induce cellular entry into S-phase, including increases in diacylglycerol, inositol 1,4,5trisphosphate, intracellular Ca2+ ion mobilization, and protein kinase C (PKC) activation [11,13]. We have also shown that $PGF_{2\alpha}$ induction of cyclin D_1 expression plays a pivotal role in the control of DNA replication and the PGF_{2a}-triggered cyclin D₁ expression involves a PKC-independent event, since $PGF_{2\alpha}$ is able to increase cyclin D_1 mRNA/protein levels in PKC-depleted cells [14]. Such a PKC-independent process may correspond to other early $PGF_{2\alpha}$ -triggered events and both PKC-dependent and independent signals appear to be concertedly required for cells to initiate DNA synthesis. Furthermore, $PGF_{2\alpha}$ appears to induce DNA synthesis via the combined actions of the induction of cyclin D₁ gene expression and other signaling pathway-triggered events [14]. Thus, a basic question regarding PGF_{2 α} signaling mechanisms is whether, and how, each personalized PGF_{2 α} signal regulates cyclin D₁ expression, and how such events and others can ultimately control initiation of DNA synthesis.

Here we report that $PGF_{2\alpha}$ causes extracellular-signal-regulated kinase (ERK₁₋₂) and p38^{MAPK} activation in Swiss 3T3 cells. Using a pharmacological approach as well as stable transfected cells with a dominant negative mutant of p38^{MAPK} we determined that ERK₁₋₂ and p38^{MAPK} activation are essential for PGF_{2\alpha}-stimulated cellular entry into S-phase. We also show that ERK₁₋₂ but not p38^{MAPK} activation, is an essential event required to induce cyclin D₁ expression, suggesting that p38^{MAPK} activation is involved in eliciting another process different from cyclin D₁ gene expression required to induce DNA synthesis in response to PGF_{2α}.

2. Materials and methods

2.1. Cell culture

Swiss mouse 3T3 cells [15] were grown in DMEM containing 10% (v/v) fetal calf serum. Sub-confluent cultures were grown in 100-mm dishes at 37 °C equilibrated with 10% (v/v) CO₂.

^{*}Corresponding author. Fax: +5411 52387501. *E-mail address:* ljimeneza@leloir.org.ar (L. Jimenez de Asua).

2.2. Initiation of DNA synthesis assay

DNA synthesis analysis was performed as previously described [4]. Briefly, 1.5×10^5 cells were seeded in 35 mm dishes and growth until confluent and quiescent (6–8 days). Then cells were stimulated by addition of

Abbreviations: $PGF_{2\alpha}$, Prostaglandin $F_{2\alpha}$: ERK, extracellular-signalregulated kinase; MAPK, mitogen activated protein kinase; pRb, retinoblastoma protein; FBS, fetal bovine serum; LIF, leukaemia inhibitory factor; Me₂SO, dimethyl sulfoxide

growth factors and labeled with [methyl ³H] thymidine for 28 h and processed for autoradiography. The percentage of cells that initiated DNA synthesis at a given time was determined as previously described [4,16].

2.3. Transfection

For stable transfections, 10^6 cells/ml were electroporated with pcDNA3.1 vector encoding *flag*-tagged wild type or dominant-negative-p38^{MAPK}[17]. After selection with G418 (400 µg/ml) and limiting dilution, multiple resistant clones were isolated and tested for p38^{MAPK} expression using anti-*flag* antibody. Cloned cells expressing the transgene were analyzed for cell proliferation and protein expression. The p38^{MAPK} constructs were a kind gift of Dr. JiaHuai Han, Scripps Research Institute, La Jolla, CA.

2.4. SDS-PAGE and immunoblotting

Protein extracts were prepared as in Sauane et al. [14]. Fifty micrograms of protein were separated on SDS–polyacrylamide gels and blotted onto nitrocellulose membranes. Thereafter, membranes were blocked and incubated overnight in the primary antibody diluted in 5% (w/v) non-fat milk in TBS-T. The primary antibodies used were: phospho-ERK₁₋₂ (#sc-7383), ERK₂ (#sc-154), p38^{MAPK} (#sc-535), cdk4 (#sc-260), cyclin D₁ (#sc-450) from Santa Cruz Biotechnology; phospho-p38^{MAPK} (#9211) from Cell Signaling; Retinoblastoma (pRb) (#14001A) from Pharmingen; *flag* (#F3165) from Sigma. Membranes were washed with TBS-T and incubated with peroxidase-conjugated secondary antibodies (Dako). The immunoblots were developed with the ECL detection reagent (Amershan). All the data shown are representative of three independent experiments.

2.5. Cyclin-dependent kinase assay

Cyclin D/cdk4-associated kinase activity was performed as described previously [18]. Briefly, quiescent and confluent cells were stimulated and harvested at the indicated times. Cyclin/cdk4 complex was immunoprecipitated with an anti-cdk4 antibody. Kinase activity was measured using 0.5 μ g GST-pRb as the substrate and 10 μ Ci [γ^{32} P]ATP at 30 °C for 30 min. Reaction was stopped and analyzed by SDS–PAGE and autoradiography.

3. Results and discussion

ERK₁₋₂ and p38^{MAPK} signaling pathways are involved in a diverse array of cellular responses. While MEK/ERK₁₋₂ is a well-characterized signaling pathway activated by growth factors and involved in cell proliferation, there is less evidence linking p38^{MAPK} activation with cell proliferation. In order to gain insights about the early signaling mechanisms that mediate the $PGF_{2\alpha}$ mitogenic response in Swiss 3T3 cells, we performed a Western blot analysis using specific antibodies for the activated form of ERK₁₋₂ (phospho-Thr²⁰⁰/Tyr²⁰⁴). $PGF_{2\alpha}$ promoted a sustained ERK_{1-2} activation, inducing a maximum increase at 5 min (Fig. 1A), remaining active for at least 8 h (data not shown). The same results were obtained when ERK₁₋₂ activation was determined by an immunoprecipitation in vitro kinase activity assay (data not shown). Treatment of Swiss 3T3 cells with U0126, a specific inhibitor of MEK₁ and thus ERK₁₋₂ activation [19], caused a concentration-dependent reduction in $PGF_{2\alpha}$ -induced ERK_{1-2} activation (Fig. 1B). In order to assess whether ERK₁₋₂ activation is required for the mitogenic effect of $PGF_{2\alpha}$, we treated the cells with U0126 before stimulation and DNA synthesis was measured. Interestingly, U0126 treatment strongly suppressed PGF2a-induction of DNA synthesis in a dose-dependent manner (Fig. 1C), whilst U0126 treatment did not significantly affect the mitogenic stimulus of fetal bovine serum (FBS) (Fig. 1C). This result suggested that the MEK_1/ERK_{1-2} signaling pathway is critically involved in the $PGF_{2\alpha}$ -proliferative response.

в Δ PGF2α С PGF2a (5 min) C 5 15 30 60 120 180 min anti-phospho ERK1-2 anti-phospho ERK1-2 anti-ERK₂ anti-ERK₂ 5 10 U0126 (µM) Me₂SO С D 100 -Cells in S-phase (%) 75 anti-phospho ERK1-2 50 anti-ERK₂ $PGF2\alpha$ (5 min) 25 GF109203 (10µM) 0 5 10 15 0 U0126 µM

Fig. 1. U0126 blocked $PGF_{2\alpha}$ -triggered ERK_{1-2} activation and DNA synthesis. Quiescent cells were treated with $PGF_{2\alpha}$ (300 ng/ml) in the absence (A) or presence of U0126 or solvent control dimethyl sulfoxide (Me₂SO) (B) or GF109203 (D) at the indicated times. Equal amounts of proteins were analyzed by Western blot using phospho-ERK₁₋₂ (upper panel) or ERK₂ antibodies (lower panel). (C) To measure the effect of ERK₁₋₂ inhibition on $PGF_{2\alpha}$ -stimulated DNA synthesis, quiescent cells were untreated (\Box), treated with $PGF_{2\alpha}$ (300 ng/ml; \blacklozenge) or FBS (10%; \triangle) in the absence or presence of U0126 (0–15 μ M). The percentage of S-phase cells was determined as described in Section 2. Results from one out of at least three independent experiments leading to the same conclusions are displayed.

 $PGF_{2\alpha}$ -stimulation of DNA synthesis in Swiss 3T3 cells also requires PKC activation [14], and PKC activation has been shown to be one of the possible pathways leading to $ERK_{1,2}$ Download English Version:

https://daneshyari.com/en/article/2052824

Download Persian Version:

https://daneshyari.com/article/2052824

Daneshyari.com