Fuel 160 (2015) 153-164

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Stability of a mine-based hollow fiber CO_2 adsorbents in the presence of NO and SO_2

Yanfang Fan¹, Fateme Rezaei², Ying Labreche, Ryan P. Lively, William J. Koros^{*}, Christopher W. Jones^{*}

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA

HIGHLIGHTS

• SO₂-deactivated primary amine fibers reversibly adsorb additional SO₂.

• Secondary amine fibers exhibit better SO₂ tolerance than primary amine fibers.

• Tertiary amine grafted fibers have good SO₂ reversibility under dry or humid conditions.

• NO does not affect the CO₂ capacity of the fibers over 120 adsorption-desorption cycles.

ARTICLE INFO

Article history: Received 13 April 2015 Received in revised form 17 July 2015 Accepted 20 July 2015 Available online 29 July 2015

Keywords: Hollow fiber Adsorbent Amine Cyclic stability Carbon dioxide NO Sulfur dioxide

ABSTRACT

Comparative studies of the cyclic stability of primary, secondary, and tertiary amine-grafted silica/polymer composite fiber adsorbents upon exposure to simulated flue gas are reported. A simulated dry flue gas mixture with 200 ppm NO does not cause degradation of the amine grafted fiber adsorbents and all fibers retain their CO₂ capacity in the presence of NO. In contrast, upon exposure to dry flue gas in the presence of 200 ppm SO₂ at 35 °C, the primary amine containing adsorbent, CA-S-APS, shows a CO₂ capacity reduction of 55% over 120 cyclic adsorption-desorption runs. As the initial SO₂ induced degradation occurs in this adsorbent, the amine sites first irreversibly adsorb SO₂ and then begin to gradually adsorb SO_2 reversibly, as evidenced from a quantitative comparison of the amount of adsorbed SO_2 to the amount of desorbed SO₂. The secondary amine containing adsorbent, CA-S-MAPS, exhibits an improved stability and approximately 25% CO₂ capacity loss is observed during cycling in the presence of SO₂. Therefore, the secondary amine based CA-S-MAPS adsorbent demonstrates some degree of tolerance to SO₂ in comparison to the CA-S-APS sample. Under humid conditions, SO₂ imposes significant detrimental impacts on the two adsorbents, as a result of increased SO₂ adsorption capacities in the presence of moisture. Although the CO₂ uptake is nearly zero in the tertiary amine adsorbent, CA–S–DMAPS, the SO₂ capacity of this adsorbent reaches 0.43 mmol/g under humid conditions and this material has the highest SO₂/N ratio of the fiber adsorbents studied. More importantly, this CA-S-DMAPS sample demonstrates reversible SO₂ adsorption, as indicated from the SO₂ cyclic adsorption experiments. The tertiary amine based fiber adsorbents have good potential for flue gas desulfurization, with advantageous characteristics of high SO₂/N ratio, excellent reversibility, low CO₂ adsorption and relatively low regeneration temperature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

http://dx.doi.org/10.1016/j.fuel.2015.07.072 0016-2361/© 2015 Elsevier Ltd. All rights reserved. Due to the global concern over the increasing atmospheric CO_2 level, new strategies to decrease CO_2 emissions are sought [1–3]. Post combustion CO_2 capture, as a CO_2 reduction technology that could be retrofitted onto existing large CO_2 emission sources such as coal and gas-fired power plants, has been the focus of intense research in recent years [4–6]. In this regard, environmentally benign, efficient adsorption technologies with low parasitic power plant loads are desired as substitutes for the conventional amine solvent absorption processes traditionally considered for CO_2 capture.

^{*} Corresponding authors. Tel.: +1 404 385 2845; fax: +1 404 385 2683 (W.J. Koros). Tel.: +1 404 385 1683; fax: +1 404 894 2866 (C.W. Jones).

E-mail addresses: bill.koros@chbe.gatech.edu (W.J. Koros), cjones@chbe.gatech.edu (C.W. Jones).

¹ Current address: School of Chemical Engineering, China University of Petroleum – Beijing, 18 Fuxue Road, Changping, Beijing 102249, China.

² Current address: Department of Chemical & Biochemical Engineering, Missouri University of Science & Technology, 1101 N. State Street, Rolla, MO 65409, USA.

Solid adsorbents have been extensively investigated as possible alternatives to amine solvents for CO_2 capture [3,4,7–10]. Amine species supported on various solids such as silica are examples of chemisorbents that have high adsorption capacities and desirable selectivity toward CO_2 over N_2 . As such, they have emerged as favored candidate materials for post-combustion CO₂ capture [3-5]. However, flue gas impurities such as SO_x and NO_x are known to bind strongly to amines, and thus can degrade the adsorption capacity of solid amine adsorbents as well as amine solutions [11–18]. Although the concentration of SO₂ in flue gas streams, typically 100–500 ppm depending on the coal sources [16,19,20], is quite low compared to that of CO₂ (9-18 vol%), this component is more strongly acidic and can irreversibly react with some of the amine adsorption sites [16,21], causing a dramatic loss of CO₂ capture efficiency in the adsorbent materials. Moreover, with the presence of H_2O and O_2 in flue gas as well, adsorption materials can also be adversely impacted by the formation of H_2SO_4 [22,23]. Although extensive flue gas desulfurization can reduce SO_x levels to just a few ppm, this treatment is expensive, and operation at more elevated SO_x levels is desirable. In this regard, improved understanding of the long term stability of amine-based solid adsorbents upon exposure to flue gas with SO_x and NO_x is necessary to assess their potential applications for CO₂ capture.

To date, many studies reporting the stability of various types of amine based solid adsorbents toward common flue gas contaminants such as SO₂, NO and NO₂ have been published [11-14,16,21,24,25]. In 1994, Diaf et al. [11] reported the adsorption performance of CO₂, SO₂, NO and NO₂ on various amine functionalized polymeric adsorbents. The results revealed that NO₂ led to the oxidation of amine sites and was the most strongly adsorbed component onto the adsorbents compared to CO₂, SO₂ and NO. They also found that tertiary amine functionalized copolymers showed high affinity for SO₂ but did not show measurable CO₂ capacity. In a study conducted by Khatri et al. [16], the strong and irreversible interaction between SO₂ and surface amine groups was found to occur in aminopropyl grafted SBA-15 upon exposure to flowing 2% SO₂/4% H₂O/He, via the formation of sulfates/sulfites. The SO₂ adsorption rate was observed to be slower than that of CO₂ adsorption; however, the adsorbed sulfur compounds could hardly be removed under mild thermal regeneration conditions, thereby effectively permanently blocking active CO₂ adsorption sites. Xu et al. [26] investigated the adsorption performance of poly(ethyleneimine) (PEI) impregnated silica adsorbents in a gas mixture containing 7% CO₂ and 60–70 ppm NO_x. The CO₂ capacity was significantly higher than the NO_x capacity, while very little NO_x was desorbed during regeneration, indicating the irreversible reaction between NO_x and the PEI impregnated silica adsorbents. Hallenbeck and Kitchin [12] conducted a study on the effect of SO₂ on the adsorption capacity of poly(styrene) based CO₂ adsorbents containing primary amines. It was found that SO_2 irreversibly interacted with the adsorbents and the CO₂ adsorption capacity rapidly decreased. The detrimental effects of SO₂ on triamine grafted silica adsorbents were also observed in a study performed by Belmabkhout and Sayari [24], where the CO₂ capacities of triamine-grafted adsorbents were reduced by over 50% compared to the initial CO_2 capacity upon exposure to pure SO_2 . In our previous work [13], we studied the stability of various aminosilane grafted silica adsorbents in the powder form to SO₂, NO and NO₂ by performing thermogravimetric experiments in the presence of various acid gases. The N-methylaminopropyl-grafted silica adsorbents containing secondary amines exhibited the highest affinity for SO₂, with partial reversibility, and the amine efficiency of SO₂/N reached 0.51. We also demonstrated that the degradation of the various aminosilica adsorbents in the presence of NO was not significant, whereas NO₂ dramatically reduced the adsorption capacity of all the adsorbents

studied. In a follow-up study, the stability of the supported amines was further evaluated by performing dynamic, multicomponent adsorption experiments in a fixed bed contactor [14]. In agreement with the previously obtained single-component results, SO₂ was found to significantly influence the dynamic CO₂ capacity of the supported amines, while little competitive effect of NO on the CO₂ adsorption was observed. This suggests a decreased affinity of the amine-based adsorbents toward NO as opposed to SO₂.

The aforementioned adsorbents, which contained primary or secondary amine groups, generally possessed higher basicity than adsorbents with tertiary amines, thereby showing stronger affinity with SO₂. More recently, Sayari and co-workers [21] described the use of tertiary amine based solid adsorbents to reversibly adsorb SO₂ under dry or humid conditions, potentially offering a way to purify the gas mixture of SO₂ prior to CO₂ adsorption in a second bed with different adsorbents, which is consistent with the previous report of Diaf et al. [11]. The presence of humidity in the gas mixture dramatically enhanced the SO₂ adsorption capacity, as was also observed for CO₂. Other works by Zhi et al. [27] and Tailor et al. [25] have also demonstrated the positive effects of moisture on SO₂ adsorption in amine grafted adsorbents. Overall, the above studies involving limited exposure and cycling of amine silica solid adsorbents to nitrogen and sulfur acid gases collectively demonstrated that these adsorbents are liable to be poisoned by NO₂ and SO₂, with primary and secondary amine-rich adsorbents being at least partially irreversibly poisoned, while NO did not exhibit detrimental impacts on the adsorption properties on the adsorbents. However, the stability of adsorbents during extensive cycling upon exposure to simulated flue gases with acid gas contaminants has rarely reported in the literature.

In this study, we report the cyclic stability of various types of amine grafted silica/polymer composite fiber adsorbents to flue gas impurities (i.e., NO and SO₂) over 120 consecutive exposure cycles. The composite polymer/silica/amine fiber adsorbents studied in this work are a new type of CO₂ capture platform [28,29] and hold promise for use as practical structured adsorbers [30]. High adsorption capacity [28], fast adsorption kinetics [31,32], and low power plant parasitic loads [33] have been associated with this type of structured adsorbent in the past. In our recent study [32], we demonstrated that 40% of the adsorption capacity in PEI impregnated silica fiber adsorbents (Torlon-S-PEI) was retained after 120 cycles upon exposure to 200 ppm SO₂. Consistent with other reports [13,14], exposure to NO at 200 ppm over 120 cycles did not lead to a significant degradation of the adsorbents. However, PEI is a mixture of amine groups with varied accessibility and basic strength [3], and it is difficult to study the role of amine type in such materials. In this regard, we have designed a series of monoamine grafted silica fiber adsorbents to systematically determine the effects of amine type on the SO₂ and NO induced degradation of the hollow fiber adsorbents under both dry and humid conditions. The CO₂ capacity over extensive rapid temperature swing adsorption/desorption (RTSA) cyclic operation was utilized as a criterion to assess the resistance of the hollow fiber adsorbents to SO₂ and NO-induced degradation. Furthermore, the effect of primary, secondary and tertiary amines on the SO₂ adsorption capacity in the corresponding grafted fibers was investigated. The thermal reversibility of various types of monoamine grafted fiber adsorbents with respect to SO₂ was explored as well.

2. Experimental section

2.1. Fiber adsorbent preparation and characterization

Dried bare composite cellulose acetate/silica hollow fibers (CA– S) were produced using a non-solvent phase inversion technique Download English Version:

https://daneshyari.com/en/article/205537

Download Persian Version:

https://daneshyari.com/article/205537

Daneshyari.com