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a b s t r a c t

Identification of cis-regulatory elements in Arabidopsis is a key step to understanding its transcriptional
regulation scheme. In this study, the Arabidopsis gene coexpression network was constructed using the
ATTED-II data, and thereafter a subgraph-induced approach and clique-finding algorithm were used to
extract gene coexpression groups from the gene coexpression network. A total of 23 large coexpression
gene groups were obtained, with each consisting of more than 100 highly correlated genes. Four clas-
sical tools were used to predict motifs in the promoter regions of coexpressed genes. Consequently, we
detected a large number of candidate biologically relevant regulatory elements, and many of them are
consistent with known cis-regulatory elements from AGRIS and AthaMap. Experiments on coexpressed
groups, including E2Fa target genes, showed that our method had a high probability of returning the
real binding motif. Our study provides the basis for future cis-regulatory module analysis and creates a
starting point to unravel regulatory networks of Arabidopsis thaliana.

© 2010 Elsevier GmbH. All rights reserved.

Introduction

One of the major challenges in current molecular biology is to
understand the cellular systems that regulate gene expression. To
achieve this aim, a key step is the identification of transcription fac-
tor binding sites (TFBSs), also called the cis-regulatory elements, in
the regulatory regions of potentially coregulated genes. The binding
site is a distinct nucleotide pattern of lengths from 5 to 15, which
can be recognized and bound by a specific protein (transcription
factor, TF) to determine the timing and location of transcriptional
activity. A more complete understanding of transcription factors
and their DNA binding activities will facilitate a more comprehen-
sive and quantitative mapping of the regulatory pathways within
cells, as well as a deeper understanding of the potential functions of
individual genes regulated by newly identified DNA-binding sites
(Stormo, 2000; Hu et al., 2005).

The determination of the binding site for a transcription factor
can be done using different approaches. Experimentally, the most
common way is the ChIP-chip (Lee et al., 2002), which combines
the techniques of chromatin immunoprecipitation and microar-
ray hybridization. A DNA segment that is bound specifically by
a TF is purified and amplified, and then genomic target loci are
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identified by comparative hybridization of the immunoprecipi-
tated and control DNA probes to a DNA microarray. However,
ChIP-chip is currently not easily applicable in many higher eukary-
otes (Sikder and Kodadek, 2005). Other established experimental
methods such as electromobility shift assay (EMSA) or DNase I foot-
printing provide high-resolution views of single promoters, but
are infeasible for large-scale analysis (Galas and Schmitz, 1978).
With the availability of large scale genome sequencing and high-
throughput gene expression analysis techniques, it is possible to
predict TFBSs using computational tools. These methods are based
mainly on the assumption that coexpression of genes arises from
their transcriptional coregulation. So given a set of coexpressed
genes, it is possible to retrieve their promoter sequences and then
find the statistically overrepresented motifs. To date, more than a
hundred predictive methods have been proposed, varying by the
motif models, statistical measures and search strategies (Stormo,
2000; Wasserman and Krivan, 2003; Sandve and Drabløs, 2006; Das
and Dai, 2007).

However, as noted by many researchers, current prediction
methods are successful for simple organisms like yeast, but per-
form significantly worse for higher multicellular organisms, such
as humans, Drosophila and Arabidopsis (Sandve and Drabløs, 2006;
Das and Dai, 2007). This is probably due to their larger genome sizes
and more complex regulatory principles. Not all coregulated gene
promoters share a common motif, because some of the identified
genes in a given cluster might in fact be secondary response genes.
On the other hand, because of the combinatorial nature of TFs, the
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same motif can be found in the promoter regions of genes that are
not coregulated. Thus, a coexpressed gene group, and especially a
relatively small group, often does not possess enough information
to enable an accurate binding motif. In recent years, some tools
making use of the phylogenetic information have been proposed,
e.g., phylogenetic footprint and phylogenetic shadow (Cliften et al.,
2001, 2003; Berezikov et al., 2004). Unfortunately, for the model
plant Arabidopsis, the lack of closely related genome sequences
restricts the wide application of these methods.

Over recent years, research on biological networks such as coex-
pression, regulation, protein interaction and metabolic networks
has become a central topic of bioinformatics (van Noort et al.,
2004; Berg and Lässig, 2006; Jalan et al., 2010; Veiga et al., 2010).
Due to the scale-free nature of biological networks, there exist
few nodes (genes) with very high degrees (Albert and Barabási,
2002; Jalan et al., 2010). These nodes are responsible for holding
the whole networks and are therefore essential to the network
structure. For a regulatory network, these nodes are transcription
factors that bind to many target genes. These TFs may be closely
related to many important stages of organism development, such
as germination, anther development, cell apoptosis, etc. Thus, fur-
ther research on these TFs and their binding activity would inform
our understanding of the transcriptional regulatory mechanisms of
the corresponding organism. Target genes bound by the same tran-
scription factor are coexpressed, and tend to form a cluster in the
gene coexpression network. In theory, when using coexpression
relationships to infer the common motifs, these large groups will
yield more information for relatively accurate motif prediction.

In the present study, we focus on these large clusters in the
Arabidopsis gene coexpression network and predict their cor-
responding motifs. After construction of the Arabidopsis gene
coexpression network based on the ATTED-II database, we
extracted a number of coexpressed gene groups (cliques in the
coexpression network) using a subgraph-induced strategy and
clique finder algorithm. Then promoter sequences of genes from
each maximal clique were analyzed using four classical predic-
tion tools for the prediction of TFBSs. A total of 4600 candidate
TFBSs were detected, and many of are consistent with previously
described cis-regulatory elements from AGRIS (Davuluri et al.,
2003) and AthaMap (Steffens et al., 2004). This study provides the
basis for future cis-regulatory module analysis and creates a start-
ing point to unravel regulatory networks in Arabidopsis thaliana.

Methods

Construction of the Arabidopsis gene coexpression network

We used the expression data available from ATTED-II (Obayashi
et al., 2007) to construct the gene coexpression network. ATTED-
II provides gene-to-gene mutual ranks and correlation coefficients
calculated from 58 publicly available experiments, 1388 GeneChips
collected by AtGenExpress. There are a total of 20,906 files for
5 chromosomes in this dataset, with each file corresponding to
an anchor gene. From each file, Pearson’s correlation coefficients
(PCCs) between the anchor gene and the rest genes were obtained.

To identify genes that are coexpressed, we computed the distri-
bution of PCCs for all gene pairs in the 20,906 files and considered
the 99% quantile of background distribution as significant (Fig. 1).
As shown in Fig. 1, PCCs between pairwise genes followed a nor-
mal distribution with a peak value of 11,033,780 at PCC = −0.03,
and the 99% quantile of the background distribution corresponded
to PCC = 0.578. Then the gene coexpression network could be con-
structed through connecting the gene pairs with PCC ≥ 0.578 and
disconnecting the rest. However, PCCs between the same pair
of genes provided by different files may be inconsistent, so we

Fig. 1. Distribution of the Pearson’s correlation coefficients (PCCs) for all gene pairs
in Arabidopsis thaliana. As shown, PCCs between pairwise genes followed a normal
distribution with a peak value of 11,033,780 at PCC = −0.03. We considered the 99%
quantile of the background distribution as significant.

removed those edges when constructing the network. Finally, we
obtained a total of 1,087,660 valid coexpression relationships.

Extraction of coexpression groups

To detect motifs, it is first necessary to obtain reliable coex-
pressed gene groups (CEGs) in the Arabidopsis gene coexpression
network. For each file downloaded from ATTED-II, which denotes
an anchor gene and its PCCs with other genes, all genes coexpressed
with it can be considered as a coexpression group (Haberer et al.,
2006). However, according to this definition, the coexpression rela-
tionships are not transitive. For example, the PCCs between two
genes g1 and g2, g1 and g3 both exceed 0.578, but it does not
guarantee that g2 and g3 are coexpressed, which contradicts the
meaning of coexpression. To overcome this problem, we applied a
graph-clustering method based on the maximal clique algorithm
as follows.

Clique and the maximal clique are useful tools in graph theory
(Bondy and Murty, 1976; Papadimitriou and Yannakakis, 1981). For
an undirected graph G, a clique is defined to be a complete sub-
graph of G, i.e., a collection of vertices that are all connected with
each other. A clique is called maximal if there are no more vertices
that can be added to the clique. A maximum clique of a graph is a
maximal clique with maximum number of vertices. A clique in the
Arabidopsis gene coexpression network has the property that any
two genes in this clique have very similar expression patterns. So
in the present study, we defined the CoExpression Groups (CEG)
of Arabidopsis genes to be the maximal cliques in the coexpression
network.

In order to obtain maximal cliques in the Arabidopsis gene coex-
pression network, it is intuitive to deal with the entire network
using some clique-finding algorithm. However, finding cliques in a
large graph is computationally intensive (Balas and Yu, 1986; Babel,
1991; Pardalos and Xue, 1994). In the present study, we explored
a subgraph-induced scheme as follows. For a maximal clique C:
{g1, g2, g3,. . ., gN}, we considered the induced sub-graph Ng1 which
consists of all genes that connected with g1 in the Arabidopsis gene
coexpression network (g1 included). Since g2, g3,. . ., gN are all con-
nected with g1, they are included in the sub-graph Ng1 , as does the
clique C. In addition, C is maximal in the whole coexpression net-
work, and Ng1 is a subgraph, so C is also a maximal clique in Ng1 .
From this observation, we can calculate cliques in all sub-networks
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