

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/mex

Conservation of the mycelia of the medicinal mushroom Humphreva coffeata (Berk.) Stev. in sterile distilled water

Monserrat García-García, Leticia Rocha-Zavaleta, Norma A. Valdez-Cruz, Mauricio A. Trujillo-Roldán *

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, México, D.F., México

GRAPHICAL ABSTRACT

H. coffeata is incubated at 30 °C for 4 days in malt extract agar with small disks of filter paper.

Filter paper disks containing mycelia are stored in sterile distilled water vials at 4°C for 18 months.

Filter paper disks are incubated in malt extract agar after storage of mycelia

ABSTRACT

Currently, there is a growing interest in obtaining and studying the biologically active compounds from higher basidiomycetes, such as Ganoderma lucidum, Lentinus edodes and Inonotus obliquus [1], but the techniques for safe long-term storage are time-consuming, susceptible to contamination, and do not prevent genetic and physiological changes during long-term maintenance [2]. A recent strategy for obtaining biologically active compounds is using mycelia submerged cultures of these mushrooms, cultured under controlled laboratory conditions [1]. However, obtaining spores of these fungi under these conditions is difficult, and in most cases the way to obtain the spores is unknown [1]. Therefore, the strategy for mycelium storage seems to be more appropriated and simple.

- A modification of Castellani's method [3-7] is proposed for higher basidiomycetes, by using the mycelium of Humphreya coffeata (Berk.) Stey., whose culture filtrates demonstrated bioactivity against lymphoma cells [8].
- H. coffeata (Berk.) Stey, was grown on malt extract agar with filter paper disks that were removed after 4 days, placed in tubes with sterile distilled water, and stored at 4°C.

E-mail addresses: maurotru@gmail.com, maurotru@biomedicas.unam.mx (M.A. Trujillo-Roldán).

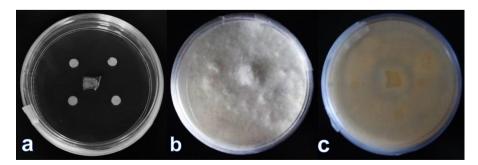
^{*} Corresponding author at: Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, México, D.F., México. Tel.: +52 55 56229192; fax: +52 5 6223369.

- Filter paper disks with *H. coffeata* (Berk.) Stey. stored at 4 °C were confirmed to be viable for up to 18 months, with no visible morphological alterations.
- © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

ARTICLE INFO

Method name: Preservation of mycelial cultures of basidiomycetes
Keywords: Filamentous fungi, Water storage, Mycelium cultures, Castellani's method, Higher basidiomycetes
Article history: Received 18 March 2014; Accepted 28 April 2014; Available online 9 May 2014

Method details


There are various methods of conservation, some of the most commonly used are repeated subculturing, lyophilization (unsuitable for most basidiomycetes) and cryopreservation [2,9–11]. However, some of these methods are not compatible with all fungi due to the particular characteristics of each species [1]. We used the method described by Castellani [3–5] with some modifications for the conservation of the mycelia of the higher basidiomycete *Humphreya coffeata* (Berk.) Stey., since it has been reported that this method ensures the viability of isolates for 1–20 years depending on the species [5,6,12,13]; however, it has not been used for higher basidiomycetes.

Preparation of the malt extract agar, FZM agar and vials

Petri dishes measuring $110\,\text{mm} \times 25\,\text{mm}$ were filled with $30\,\text{mL}$ of malt extract agar (MEA) or FZM agar; filter paper disks of $5\,\text{mm}$ diameter (Whatman® No. 4) were manually prepared and sterilized, and then placed on the filled Petri dishes with the mycelia. MEA contains (in g/L) malt extract 20.0, peptone 1.0, dextrose 20.0, and agar 20.0. [14]. FZM agar [8] contains (in g/L) glucose 35.0, yeast extract 2.5, peptone 5.0, KH₂PO₄·H₂O 1.0, MgSO₄·7H₂O 0.5, thiamine 0.05, and bacteriological agar 18.0, pH 5.5 [15]. Then, 10 mL sterile glass vials were pre-sterilized for 21 min at 121 °C (TOMY ES-315 autoclave), and 4.0 mL of distilled sterile water was added to each vial.

Inoculation of mycelia in malt extract agar

The central area of the Petri dishes with MEA or FZM agar media was inoculated with *H. coffeata* (Berk.) Stey. (Fig. 1a), and the 5-mm filter paper disks (Whatman[®] No.4) were placed around the inoculum. Thereby, on growing the mycelium of *H. coffeata* would cover the Petri dish, including the filter paper disks, as seen in Fig. 1b. The Petri dishes were incubated at 30 °C for 4 days (FELISA FE-293A, México).

Fig. 1. (a) Petri dish with malt extract agar inoculated with *Humphreya coffeata* (Berk.) Stey., showing how the filter paper disks are placed. (b) Cultivation of *H. coffeata* (Berk.) Stey. growing in the Petri dish. (c) The bottom of the Petri dish with filter paper disks covered by mycelium.

Download English Version:

https://daneshyari.com/en/article/2058681

Download Persian Version:

https://daneshyari.com/article/2058681

<u>Daneshyari.com</u>