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The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate
the fermentation process, we used the image processing software, CalMorph, which generates morphological data on
yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters
changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several
important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that
much of the observed variability in the experiment was summarized in just two components: a change with a peak and a
change over time. Second, PCA indicated the independent and important morphological features responsible for dy-
namic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data
provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol
production.
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Controlling propagation and fermentation in cellars is an
important element in beer fermentation. After raw materials,
including malted barley, hops, cereals, adjunct, and water, are
converted into wort, brewing yeasts grow and produce ethanol.
During fermentation, the production of a well-balanced aroma and
the flavor of the final product are at least as important as efficient
fermentation and high yield. Quality assurance management,
especially of brewing yeasts, is important to maintain their good
physiological condition (1).

Several features of brewing yeasts have been used to charac-
terize their physiological states during fermentation. Viability is the
traditional method (2). Commonly used viability tests are based on
the bright-field stains methylene blue (3) and methylene violet (4)
and the fluorescent dye 1-anilino-8-naphthalenesulphonic acid (5).
The ability to exclude the dye is dependent on cell viability, so any
dead cells are stained. Viability provides information regarding the
live population in culture but not about individual living yeast cells.

In contrast, vitality reflects the physiological condition of indi-
vidual cells during yeast proliferation. Several methods have
developed to measure yeast vitality, such as detection of intracel-
lular pH (ICP) (6), measurement of specific oxygen uptake rate (7,8),

the acidification power test (9,10), carbon dioxide production (11),
vicinal diketone reduction (12), glycogen and trehalose staining
(13), and the budding ratio (14).

Of the features analyzed, budding has become of great interest,
because the budding ratio correlates with metabolism of poly-
saccharides and production of bioethanol and other metabolites,
such as aroma and flavor compounds (15). Flow cytometry allows
fine measurements, including parameters related to the cell cycle
(16). More recently, methods combining these three features,
viability, cell concentration, and budding ratio, have been devel-
oped to simultaneously monitor viability and vitality (17).

To assess quantitatively the morphological features of yeast, we
developed an automatic image processing system, CalMorph
(18,19). CalMorph directly processes fluorescence micrographs and
generates 501-dimensional quantitative data regarding mother
cells and bud shape, nuclear shape and location, and actin distri-
bution. Using CalMorph, we can easily, rapidly, and reproducibly
generate various quantitative data (20). The program generates
reproducible data consistent with those obtained manually. CalM-
orph can also monitor yeast morphological changes that accom-
pany the budding cycle (20), such as the bud index, and specific
morphological features in G1, S/G2 and M cells.

The purpose of this study was to investigate the dynamics of
brewing yeast during fermentation. Because the budding profile is a
good indicator of cell vitality, we tried to use CalMorph to monitor
the physiological state of brewing yeasts during fermentation.
However, the hundreds of parameters generated by CalMorph
distracted from the objective. Specific parameters could be selected
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in advance based on biological meaning, but this would be arbi-
trary. The selection of pre-existing parameters was also problem-
atic, because not all informative features were always used. As an
alternative approach, we performed successive principal compo-
nent analyses to extract important time-dependent morphological
features. Our results suggest that statistical analyses of morpho-
logical data can facilitate yeast management during fermentation.

MATERIALS AND METHODS

Strains, culture conditions, and sample preparation The yeast strain used
was the bottom-fermenting yeast Saccharomyces pastorianus KBY011 (21). KBY011 was
pre-cultured in YPD10medium containing 1% yeast extract (Becton, Dickinson and Co.,
USA), 2% peptone (Becton, Dickinson and Co.), and 10% glucose (Nacalai Tesquie, Japan)
with shaking at 20�C for 3 days. Harvested cells were diluted to an optical density of
OD600 ¼ 0.5, and then cultured at 20�C for 96 h in 500 mL of YPD10 medium with
gentle stirring with a magnetic stir-bar under anaerobic conditions. Samples were
collected at 0, 24, 48, 72, and 96 h, and cells harvested by centrifugation. Apparent
extracts were analyzed according to a previous reference (22).

Image acquisition and CalMorph analysis Fixation and staining of yeast
cells, image acquisition, and CalMorph analysis were performed according to the
CalMorph manual (http://scmd.gi.k.u-tokyo.ac.jp/datamine/calmorph/CalMorph-
manual.pdf). Briefly, cells (8 � 106/mL) were fixed in 0.1 M potassium phosphate
buffer (pH 6.5) containing 3.7% formaldehyde (Wako Pure Chemical Industries,
Japan). To obtain fluorescence images of the cell-surface mannoprotein, actin
cytoskeleton, and nuclear DNA, cells were stained with fluorescein isothiocyanate-
Con A (FITC-Con A, Sigma, USA), rhodamine-phalloidin (Rh-ph, Invitrogen Corp,
USA) and 40 ,6-diamidino-2-phenylindole (DAPI, Sigma), respectively. CalMorph
automatically characterizes each yeast cell by calculating 501 morphological pa-
rameters based on data frommore than 200 cells. In total, five independent cultures
grown under the same condition were analyzed.

Successive principal component analysis To evaluate time-dependent
morphological changes, we performed successive principal component analyses
(PCA; Fig. 1). First, the 501 morphological parameters were screened to yield 248
parameters that change considerably during fermentation (Fig. 1A). Second, these
248 traits were subjected to PCA to extract the principal components (PCs)
explaining the changes (Fig. 1B). Finally, PCA was again applied to the parameters
correlating highly with each PC to extract independent parameters (Fig. 1C). All

statistical analyses were performed using the ‘R’ software (http://www.r-project.
org/).

In Fig. 1A, the KruskaleWallis (KW) test (23) was applied to each parameter to
identify large changes. For each parameter, the data consisted by five replications of
five time points (25 samples). The false discovery rate (FDR) corresponding to each P
value of the KW test was estimated by an empirical permutation test of 1000 iter-
ations (24).

In Fig. 1B, PCA was applied to the time-course data of the significantly changed
248 parameters (KW test, FDR¼ 0.05), after five sets of five replicated sample values
were combined across time points, ranked among the combined samples, and
summed into one rank-sum value for each time point, as described previously (25).
To standardize the rank-sum values among the parameters, the rank-sum values at
0 h were subtracted from the rank-sum values of the other time points. Then, ei-
genvalues (the variance) and eigenvectors (the rotation) of the rank-sum values
were calculated from the covariancematrix for the 248 parameters, the contribution
ratio was calculated as the ratio of variance, and the PC score was computed by
matrix multiplication between the rank-sum values and the rotation. The PC load-
ings were computed by multiplication of the rotation (eigenvectors) by the square
root of the eigenvalue and dividing by the square root of the variance of the rank-
sum. P-values for the loadings were computed using a t distribution, where t process
was the same as that used to transform a Pearson’s productemoment correlation
coefficient into a t value (26).

In Fig. 1C, to determine morphological features accompanying PC1 of the first
PCA, we selected 50 parameters showing significantly high absolute loadings in PC1
(FDR ¼ 0.15), and a second PCA was performed for the parameters selected using
morphological data from 122 replicated wild-types as a null distribution. The 50
parameter values of the 122 replicated wild-type morphological data sets were
transformed to a normal distribution using the BoxeCox power transformation, as
described previously (26). The eigenvalues (the variance) and the eigenvectors (the
rotation) of the 122 transformed wild-type data sets were calculated using the
covariance matrix of the 50 parameters. The contribution ratio, PC scores, and
loadings were calculated as for the first PCA. The PCs of the second PCAwere named
in alphabetical order (e.g., PC1, PC2, and PC3 were named PC1a, PC1b, and PC1c,
respectively). For PC2, we selected seven parameters; the second PCA was per-
formed in a similar manner.

RESULTS

Time-dependent morphological changes in
fermentation Bottom-fermenting yeast cells were cultured at
20�C with gentle stirring under anaerobic conditions. The changes
in cell numbers and apparent extract are shown in Fig. S1. We
quantified fermenting yeast cell morphology using 501
morphological parameters. We used image-processing software,
CalMorph, after obtaining cell wall, actin, and nuclear DNA
images (19). Fermenting yeast cells were sampled at 0, 24, 48, 72,
and 96 h, fixed, stained with the fluorescent dyes, FITC-Con A,
DAPI and Rh-ph, photographed (at least 200 cells), and quantified
using CalMorph. The experiments were replicated five times
independently for each time point. As shown in the heat map
(Fig. 2), time-dependent changes in the morphological
parameters differed in pattern. Of the 501 parameters, 248, 127,
and 95 of the 501 differed significantly among the five time
points with false discovery rates (FDRs) of 0.05, 0.01, and 0.005,
respectively (Fig. 1A).

Key variables in a high-dimensional morphological data set
during fermentation PCA is an exploratory multivariate statisti-
cal technique for simplifying complex data sets (27). It has been used
for analysis of time-dependent changes in gene expression data (28)
and dose-dependent changes in morphology data (26). To
summarize the morphological dynamics during fermentation, we
applied PCA to the morphology data using the morphological
measurements as the variables and the different time points as the
observations.

The data set contained values for 248 significantly different
parameters (FDR ¼ 0.05) collected with five replicates at 0, 24, 48,
72, and 96 h during fermentation. Thus, the matrix to be analyzed
had 25 rows of conditions and 248 columns of parameters. Five sets
of five replicate sample values were combined across time points,
ranked among the combined samples, summed at each time point,
and used for the first PCA. Our analysis indicated that we could
summarize the data using two variables. The cumulative contri
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FIG. 1. Schematic flow chart for the successive principal component analysis. Down
arrows indicate each step in application of the statistical test or PCA (AeC). The 501
parameters were systematically filtered into semantic fractions by each step. (A)
KruskaleWallis test was used to select parameters that changed considerably during
fermentation and storage. (B) PCA was applied to identify the patterns of the
morphological variation. (C) PCA was applied to extract independent morphological
features.
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