

Available online at www.sciencedirect.com

MYCOSCIENCE

ISSN 1340-3540 (print), 1618-2545 (online)

journal homepage: www.elsevier.com/locate/myc

Note

Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid

Kanako Hatoh ^a, Kosuke Izumitsu ^a, Atsushi Morita ^a, Kiminori Shimizu ^b, Akira Ohta ^d, Masataka Kawai ^c, Takashi Yamanaka ^e, Hitoshi Neda ^e, Yuko Ota ^e, Chihiro Tanaka ^{a,*}

ARTICLE INFO

Article history:
Received 3 February 2012
Received in revised form
6 April 2012
Accepted 10 May 2012
Available online 1 September 2012

Keywords:
Agrobacterium tumefaciens
Cryptococcus promoter
Maitake
Transgene
Winter mushrooms

ABSTRACT

Agrobacterium tumefaciens-mediated transformation (AMT) was successfully applied to mycelia of the 3 economically important mushrooms Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa. We used the hygromycin B resistance gene (hph) under the control of the Cryptococcus neoformans actin promoter. Eighty-six resistant strains of H. marmoreus, 4 of F. velutipes, and 2 of G. frondosa were obtained. All transformants were highly resistant to hygromycin B, suggesting that the C. neoformans actin promoter has a potential universal promoter activity in basidiomycetes. Southern analysis revealed random but single integration of the hph gene.

© 2012 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

Agrobacterium tumefaciens-mediated transformation (AMT) has been used for genetic engineering of variety of plants. Since Bundock et al. (1995) succeeded in transformation of Saccharomyces cerevisiae by using AMT, this method has come to be used for fungi (De Groot et al. 1998). Transformation by AMT has been reported in various important fungi, including the mushroom species Agaricus bisporus (Chen et al. 2000),

Hypholoma sublateritium (Godio et al. 2004), Suillus grevillei (Murata et al. 2006a,b), and Flammulina velutipes (Cho et al. 2006; Okamoto et al. 2010).

To develop a transformation system for basidiomycetous fungi—especially for mushroom species—several promoters for driving the expression of the marker gene must generally be evaluated (Chen et al. 2000; Murata et al. 2006a,b). The

^a Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

^b Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan

^c Nara Forest Research Institute, Takatori, Nara Pref. 635-0133, Japan

^d Shiga Forest Research Centre, Yasu, Shiga Pref. 520-2321, Japan

^e Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan

^{*} Corresponding author. Tel.: +81 75 753 6311; fax: +81 75 753 2266. E-mail address: chihiro@kais.kyoto-u.ac.jp (C. Tanaka).

Aspergillus nidulans trpC promoter is well known to be effective in driving the expression of selectable markers in a wide range of ascomycetous fungi, but it does not work well in some basidiomycetous fungi (Godio et al. 2004; Okamoto et al. 2010).

Here, we developed a transformation method for 3 economically important mushroom species, Hypsizigus marmoreus, F. velutipes, and Grifola frondosa, by using an AMT method. In these experiments, we commonly used the transforming plasmid pPZP-HYG2 (Walton et al. 2005), which contains a hygromycin resistance gene (hph) under the regulation of the actin promoter of Cryptococcus neoformans. Our results indicate that the actin promoter of C. neoformans has potential as a universal promoter for driving the expression of selectable markers in a wide range of mushroom species.

A. tumefaciens EHA105 (Hood et al. 1993) harboring pPZP-HYG2 (gift from Dr. Alexander Idnurm; Walton et al. 2005) was used for the mushroom transformation. Agrobacterium cells carrying pPZP-HYG2 were inoculated into LB liquid medium containing 200 μ g/ml kanamycin and grown at room temperature using a rotary shaker to the mid-exponential growth phase. The culture was centrifuged, and the supernatant was removed. The bacterial cells were diluted to an optical density (wavelength 660 nm) of 0.2 in induction medium (IM) (Bundock et al. 1995).

H. marmoreus was grown in complete medium (CM; Tanaka et al. 1991) at room temperature using a rotary shaker for about 2 wk, F. velutipes was grown under the same conditions for about a week and G. frondosa was grown for about 20 d. Then the medium was removed by centrifugation. The mycelia were resuspended in 1 ml IM medium and homogenized with an Ultra-Turrax T25 homogenizer (IKA Werke, Satufen, FRG).

Agrobacterium cells and fungal suspensions were mixed in a 1:1 (v/v) ratio. An aliquot of 200 μ l of the mixture was spread on each autoclaved cellulose acetate filter (35 mm diameter; Y008A035A; Toyo Roshi Kaisha, Tokyo, Japan) on the IM plate and incubated at 28 °C for 2–4 d. After the co-cultivation, the filters were transferred to selection medium (glucose 10 g/l, yeast extract 1 g/l, trypton 1 g/l, agar 12 g/l) supplemented with 50 μ g/ml cefotaxime and 50 μ g/ml tetracycline hydrochloride to counter-select Agrobacterium cells and 50 or 100 μ g/ml hygromycin B to select for fungal transformants.

To test the resistance of strains to hygromycin B, we grew the resistant strains or wild types of F. velutipes, H. marmoreus, and G. frondosa on modified Hamada's medium (glucose 20 g/l, yeast extract 2 g/l, KH $_2$ PO $_4$ 1 g/l, agar 12 g/l) containing 0, 10, 25, 50, 100, or 200 µg/ml hygromycin B. After 11 days, the radii of the colonies of H. marmoreus were measured. The size of the colonies of Flammulina vertipes and G. frondosa were measured after 6 d and 22 d respectively. The measured colony size means the length from inoculum disc edge to colony edge.

For molecular analysis of transformants, genomic DNA was extracted from mycelia of transformants and wild-type strains, according to our previously published methods (Nakada et al. 1994; Izumitsu et al. 2009, 2012). DNA handling and digestion and gel electrophoresis were conducted according to standard methods (Sambrook et al. 1989). The existence of hph was assessed by PCR analysis using the primers HPH f1 (5'-TTCGACAGCGTCTCCGACCTGATGC-3') and HPH r1 (5'-TGCTGCTCCATACAAGCCAACCACG-3'). The

existence of actin promoter of *C. neoformans* in upstream region of the *hph* gene was also assessed by PCR analysis using the different primer set [ACTPRO f1 (5'-CCATTGGAT CATGGGTGCTAGG-3') and HPH r2 (5'-ATGCAATAGGTCAG GCTCTCGC-3')]. The PCR products were analyzed by TAE-1% agarose gel electrophoresis.

For Southern blot analysis, genomic DNA was digested with HindIII. DNA fragments were size-fractionated on 0.75% agarose gel (SeaKem GTG; FMC BioProducts, Rockland, ME, USA) and blotted by alkali transfer with 4 M NaOH onto a positively charged nylon membrane (Biodyne Plus; Pall Corp., Pensacola, FL, USA). As a probe, we used the PCR product (about 0.8 kb) containing part of the hph gene. Probe labeling, hybridization, and detection were all done according to the manufacturer's protocols (AlkPhos Direct Labeling and Detection System with CDP-Star; GE Healthcare, Little Chalfont, UK; LAS1000 Luminescent Image Analyser; Fuji Photo Film Co. Ltd., Tokyo, Japan).

The result of transformation experiments is summarized in Table 1 and Fig. 1. Transformation experiments were performed with A. tumefaciens EHA105 containing the pPZP-HYG2 plasmid (Walton et al. 2005). Three mushroom species, H. marmoreus, F. velutipes and G. frondosa, were treated and transformed. H. marmoreus showed high transforming frequency: 86 hygromycin-resistant strains were obtained from 17 filters. Four resistant strains of F. velutipes and 2 resistant strains of G. frondosa were obtained (Table 1).

To test the sensitivities of transformants to hygromycin B, we grew the strains on medium containing hygromycin B and then measured colony growth (Fig. 1). The resistant strains could grow on medium containing 100 μ g/ml hygromycin B, whereas the wild types did not grow. Wild-type colonies of H. marmoreus and F. velutipes would not grow in the presence of hygromycin B at concentrations of 25 μ g/ml or higher. Wild-type G. frondosa would not grow on medium containing hygromycin B at 50 μ g/ml or 100 μ g/ml.

To confirm the insertion of the selectable marker gene into the transformant genomes, we performed PCR using primers for the hph gene and the hph fused actin promoter from C. neoformans in wild-type and transformant strains.

Four randomly selected transformants of H. marmoreus, all 4 transformants of F. velutipes, and all 2 transformant strains of G. frondosa were used for both the experiments. PCR analysis to detect transformants gave the expected bands, which were not detected in DNA from the untransformed mycelia of wild-type strains. Every resistant strain tested gave obvious bands [Fig. 2 and Supplemental Fig. (a) in electronic

Table 1 $-$ Results of Agrobacterium-mediated transformation.		
Species	No. of filter used	No. of obtained hygromycin B resistant colonies
Hypsizigus marmoreus Flammulina velutipes Grifola frondosa	17 21 18	86 4 2

Download English Version:

https://daneshyari.com/en/article/2060846

Download Persian Version:

https://daneshyari.com/article/2060846

<u>Daneshyari.com</u>