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a b s t r a c t

Linear and Artificial Neural Network (ANN) based correlations have been developed to determine the
Pour Point and Cloud Point of middle and heavy distillates. Proposed correlations are based on the most
commonly measured properties in petroleum industry i.e. density and distillation temperatures. The lin-
ear correlations are presented as such. For neural networks, weights of the optimized network are pre-
sented such that the correlation can be easily implemented by the reader.

� 2012 Published by Elsevier Ltd.

1. Introduction

Stricter fuel norms and quality control have led to an increasing
demand for faster and online evaluation of certain refinery stream
properties. Accurate estimation of various product properties dur-
ing the basic engineering phase or simulation can improve the
overall economics of refinery. Two such properties are Pour Point
and Cloud Point. These properties become important from the
diesel cut right down to the high boiling asphalt and tar. Good esti-
mation of these properties is thus of prime importance. These
properties are also required during the economic optimization
and basic engineering work of refinery. Estimation of these proper-
ties for individual streams along-with the simulation studies can
be very helpful.

Pour Point [1] of a petroleum specimen is an index of the lowest
temperature of its utility for certain applications; it is a measure of
the relative amount of wax in oil [2]. In the same way Cloud Point
[3] is also an index for the utility of a petroleum product for certain
applications measured as the temperature at which a cloud is first
observed at the bottom of the test jar. At low temperatures crystals
of paraffins form in fuel imposing restrictions on its use. A few de-
grees below the temperature at which the crystals first appear, the
Cloud Point; a crystal network develops in the fluid preventing it
from flowing and leading to its Pour Point [4]. So in a way cloud
and Pour Points are related and are measures of the paraffin con-
tent of the fuel. These properties are also relevant in the context

of cold countries where filter plugging in the engine is a problem
during cold weather.

The measurement of properties of petroleum and its different
streams are based on well-established procedures by international
organizations. Pour Point measurement, based on ASTM D97 has no
automated method for measurement. The method is tedious and
based on observation. The least count of Pour Point using this meth-
od is 3 �C [1]. Similar is the case for Cloud Point which is based on
ASTM D2500 test method. It is also a test based on observation
rather than any automated measurement. It requires the experi-
menter to record the temperature at which the crystals first appear.
In certain cases the appearance of cloud is not very distinct [3].

2. Previous efforts

The need for quick measurement of Pour and Cloud Points has
led to the development of lot of correlations. Riazi and Daubert
[5] developed an empirical correlation using regression for Pour
Point which was modified by Chakrabarti [6]. The correlation pro-
posed by Riazi and Daubert [5] was based on specific gravity,
molecular weight and viscosity with an average absolute error of
3.89 �C while the correlation given by Chakrabarti [6] was based
on specific gravity, molecular weight and distillation temperatures
(10% and 90%). However the average absolute error reported by
Chatterjee and Saraf [2] using different database and correlations
proposed by Riazi and Daubert [5] and Chakrabarti [6] was
8.52 �C and 14.88 �C respectively. Ganguly et al. [7] included the
initial and final cumulative volume cuts of the product in their
Pour Point prediction method based on ANN. Chatterjee and Saraf
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[2] reported the inclusion of mid volume fraction apart from the
above properties. Two API correlations [8] for Pour Point are also
available, which are based on usage depending on whether kinetic
viscosity is available or not. Other parameters being mean average
boiling point and specific gravity. Average errors for these correla-
tions with and without viscosity are 3.83 �C and 5.5 �C respectively.
Other methods include those based on differential Scanning Calo-
rimetry like the work done by Claudy et al. [9], NMR spectroscopy
by Caswell et al. [10], mid IR spectroscopy and neural networks –
Pasadakis et al. [11], composition of fuel using NMR and distillation
temperatures – Cookson et al. [12].

For Cloud Point estimation, even fewer correlations are avail-
able. API correlation [8] uses mean average boiling and specific
gravity for the estimation of Cloud Point; average error for this cor-
relation is 4.11 �C. Claudy et al. [9] suggested a method based on
Scanning Calorimetry. Caswell et al. [10] also gave a method to
determine Cloud Point using NMR spectroscopy; another method
was based on NMR and distillation temperatures by Cookson
et al. [12]. Pasadakis et al. [11] proposed correlation based on
ANN which uses IR spectroscopy to determine Cloud Point.

Correlations proposed in the literature are either not accurate
enough or they require lot of information for the estimation of
Cloud Point and Pour Point of the mixtures. If the correlation is
based on the easily determined properties, the deviation in the
experimental and correlated value is large. Though correlations
based on IR, NMR, Scanning Calorimetry are accurate and robust,
these properties are seldom measured for different refinery
streams. In actual refinery operations, sulfur and/or nitrogen con-
tent, density and distillation data are the most common properties
measured for different intermediate streams and end products.
These properties represent overall product quality and perfor-
mance of the unit. Distillation data and density are also the most
important properties for defining refinery streams or assays in pro-
cess simulation tools e.g. Honeywell’s UniSim� Design. Simulation
tools use these properties to calculate other thermo-physical prop-
erties of streams required for process simulation. Properties like
NMR and Scanning Calorimetry are seldom measured in refineries
and they cannot be utilized directly for process simulation.

3. Correlations for Cloud Point and Pour Point

Present work deals with the formulation of correlations for Pour
Point and Cloud Point using the readily determined properties i.e.
density and distillation data. Using these properties, Cloud and
Pour Point can be estimated during the simulation phase itself.
Artificial Neural Networks were employed based on their reputa-
tion to recognize patterns even in seemingly unrelated data. The
importance of linear correlations however was not disparaged.
Linear correlations can be used to reduce the computational cost/
resources by sacrificing accuracy. A typical example is refinery
economics which is based on linear programming (LP) technique.
Proposed linear correlations can be very useful in LP studies.

To form correlations for Pour Point (ASTM D97) and Cloud Point
(ASTM D2500), the primary inputs selected were Specific Gravity
and Distillation temperatures: 10, 50, and 90 volume percent mea-
sured using ASTM D86 method.

3.1. Linear correlations

Simplex method was employed for the estimation of regression
coefficients for linear correlations. Absolute error was selected as
the objective function which was minimized for the estimation
of these coefficients. The procedure was repeated with different
initial guess values to ensure that the minima of error estimated
by the algorithm were the global and not the local ones.

3.2. Artificial Neural Networks

To improve the accuracy, Artificial Neural Networks (ANNs)
were employed in the second stage of the proposed work. Simple
neural network models which were based on the above mentioned
inputs were developed. For this purpose ‘Stuttgart Neural Network
Simulator’ (SNNS) version 4.2 [13] was used as a simulator. The
data set was divided into three sets, wherein 101 points were used
for training, 29 for validation and 15 for testing for Pour Point. For
Cloud Point, the division was: 80 data points for training, 23 for
validation and 12 for testing. All data sets were scaled linearly
between 0.05 and 0.95 using the function below:

xi ¼
aðxi � xmin

i Þ
ðxmax

i � xmin
i Þ
þ b ð1Þ

where a and b are constants with the values of 0.9 and 0.05
respectively.

To determine the optimal network, training was performed
using logistic sigmoidal transfer function, given as

f ðnetjÞ ¼
1

1þ expð�netjÞ
ð2Þ

where netj is the output from a jth neuron, given as

netj ¼
Pn

0
xiwij ð3Þ

where xi is the input parameter and the value of xo is always unity
which takes bias into account.

During the training of the network, after each iteration error of
validation dataset was estimated to avoid overtraining.

4. Database

Honeywell’s ASSAY2™ and equity crude assay databases of PET-
RONAS were used for the development of the correlations.

Table 1 shows the range of inputs and outputs used in the
present work. From the minimum T10% and maximum T90% temper-
atures it can be observed that all probable streams being blended
into diesel have been covered i.e. from heavy naphtha right up to
Atmospheric Gas Oil for Pour Point and Heavy Vacuum Gas Oil
for Cloud Point.

For few of the data points distillation analysis was available
using ASTM D1160 test method in the database. UniSim� Design
Suite R390 was used to convert ASTM D1160 values to ASTM D86
using default option of API 1974 in UniSim� Design. Data was
checked for consistency, distillation temperatures (ASTM D86),
Pour Point (ASTM D97) and Cloud Point (ASTM 2500) all in �C.

For the proposed neural network models, a thorough examina-
tion of the input–output data was done to identify and eliminate
outliers. Next inputs and outputs were scaled to avoid numerical
overflows due to very large or small value of weights. Also properly
scaled inputs and outputs enhance the overall network perfor-
mance [14]. A small margin during scaling was kept to facilitate
extrapolation on either side of the range. Also it deals effectively
with the problem of large output layer weights which may lead

Table 1a
Minimum and maximum values of inputs and outputs for Pour Point correlation.

Property Standard Units Minimum Maximum

Specific gravity ASTM D4052 – 0.7612 0.9892
T10% ASTM D86 �C 144.00 506.67
T50% ASTM D86 �C 149.00 514.56
T90% ASTM D86 �C 161.00 525.32
Pour Point ASTM D97 �C �74.00 72.00
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