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a b s t r a c t

Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of
venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis
pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence
architecture-based elimination and similarity searching using BLAST to improve the accuracy of sequence
identification and classification, while reducing requirements for manual intervention. As a proof-of-
concept, we used this approach reanalysed three previously published cone snail transcriptomes from
diverse dietary groups. Our pipeline method generated similar results to the published studies with
significantly less manual intervention. We additionally found undiscovered sequences in the piscovorous
Conus geographus and vermivorous Conus miles and identified sequences in incorrect superfamilies in the
molluscivorus Conus marmoreus and C. geographus transcriptomes. Our results indicate that this method
can improve toxin detection without extending analysis time. While this method was evaluated on cone
snail transcriptomes it can be easily optimised to retrieve toxins from other venomous animals.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Venoms are among the most common adaptations across the
animal kingdom ranging from bees and wasps, snakes, scorpions,
spiders and marine animals such sea anemones, jellyfish and cone
snails for both prey capture and defence (Casewell et al., 2013).
Venoms induce a range of effects including cardiotoxicity, myo-
toxicity, and neurotoxicity with potency and specificity leading to
the widespread interest in them as possible therapeutics (King,
2011). Several molecules such as the blockbuster ace-inhibitor
Captopril, originally isolated from the venom of the snake
Bothrops jararaca and the intrathecal analgesic Prialt, originally
isolated from the venom of the cone snail Conus magus, showcase
the therapeutic potential of venoms (King, 2011). Toxins have also
been used to probe receptoreligand interactions at their respective
molecular targets. For example, the crystal structure of ASIC1a
bound to psalmotoxin-1 (Baconguis and Gouaux, 2012; Dawson
et al., 2012) isolated from the spider Araneae theraphosidae
(Escoubas et al., 2000) was used to map the toxin-binding domain
and understand activation mechanisms of ASICs (Baconguis and

Gouaux, 2012). The co-crystallisation of ASIC1a with MitTx, a pain
causing Texas coral snake toxin revealed the open state confor-
mation of the channel (Baconguis et al., 2014). Similarly, a number
of a-conotoxins including TxIA (Dutertre et al., 2007) and PnIA
(Celie et al., 2005), as well as snake toxins such as a-cobratoxin
(Bourne et al., 2005), have been used to study binding interactions
of nAChRs via its molluscan glial surrogate protein, AChBP (van Dijk
et al., 2001).

Venoms also act as models for evaluating the role of natural
selection on predatoreprey interactions facilitated by the rapid
rates of evolution of toxin genes and the expression of individual
toxins by single genes (Casewell et al., 2013). While many venom
systems are thought to have evolved primarily for predation, ma-
rine cone snails produce distinct predatory and defencive venoms,
thus allowing the study of their evolutionary response to different
ecological pressures (Casewell et al., 2013; Dutertre et al., 2014). As
a result of these diverse evolutionary pressures, venoms continue
to provide novel tools for studying receptor function, with a sig-
nificant number having been evaluated for their therapeutic po-
tential (Casewell et al., 2013).

Venoms invariably consist of complex mixtures of peptides and
proteins acting in a synergistic manner. To isolate individual pep-
tides, venoms were traditionally first separated by assay-guided
fractionation before assaying in animal models. However, this* Corresponding author.
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method requires large quantities of venom, and is time and
resource intensive (Prashanth et al., 2012). Recent advances in
transcriptomic and proteomic approaches, and the development of
complementary bioinformatics tools have established ‘venomics’ as
an accelerated method for studying venoms, with several seminal
discoveries reported using this approach (Pineda et al., 2014;
Prashanth et al., 2014; Zelanis and Tashima, 2014). In addition to
novel toxin discoveries (Jin et al., 2014; Viala et al., 2015), venomics
has helped uncover the mechanisms governing toxin diversifica-
tion (Dutertre et al., 2013; Jin et al., 2013), distinct defencive and
predatory venom gland specialisation in Conidae (Dutertre et al.,
2014), and the morphological constraints driving the evolution of
centipede venoms (Undheim et al., 2015). In the absence of refer-
ence genomes for many venomous animals, transcriptome
sequencing of venom glands has come to underpin the venomics
approach and has enabled novel toxin discovery at an unprece-
dented level from snakes (Durban et al., 2011), spiders (Pineda
et al., 2014), scorpions (Rend�on-Anaya et al., 2015), cone snails
(Prashanth et al., 2014), and even relatively poorly characterised
animals such as ants (Bouzid et al., 2013).

With the reduced cost of 454-Pyrosequencing and Illumina,
sequencing the venom gland transcriptome has become an
affordable and relatively quick way to fingerprint the venom profile
of animals (Liu et al., 2012). This approach can also uncover rare
peptides that maybe missed by traditional assay-guided fraction-
ation (Prashanth et al., 2012). In particular, transcriptome
sequencing has been used extensively to study of cone snail
venoms because a single read of the 454-Pyrosequencing platform
can cover the entire conotoxin precursor cDNA (~300 bp) thus
circumventing the issue of assembly and this sequencing platform
has been used to uncover the venome of various Conidae
(Prashanth et al., 2014). Recent technological advances have
increased sequence read lengths generated by the Illumina plat-
form allowing better quality assemblies, which combined with the
much greater sequencing depth provided by the platform
(Schirmer et al., 2015) has already started to be used to sequence
venom gland transcriptomes producing much larger datasets
(Barghi et al., 2015; Lavergne et al., 2015).

For such transcriptomic datasets, data analysis involves identi-
fying and classifying putative venom peptides. Sequence annota-
tion typically uses homology searching using BLAST to either
nucleotide or protein sequence databases with programs like
BLAST2GO (Conesa et al., 2005) used to perform process level
annotation (Stein, 2001). However, the sheer volume of data
generated in next-generations sequencing experiments renders
such an approach computationally restrictive or very time-
consuming. Stand-alone programs such as ConoSorter that trans-
late cDNA reads into six reading frames and identify coding se-
quences of conotoxins using a combination of regular expressions
and profile hidden Markov models (pHMM) have partially over-
come this issue (Lavergne et al., 2013). Though this program can
handle large datasets, an overreliance on such programs can miss
novel toxin sequences that frequently possess novel cysteine scaf-
folds. It can also lead to incorrect annotations, such as the Con-
insulins from Conus geographus being misidentified as a novel
conotoxin gene superfamily (Safavi-Hemami et al., 2015).

To improve transcriptomic data analysis, we have optimised a
sequence annotation pipeline designed to efficiently identify
conotoxin-like sequences from large datasets using freely available
bioinformatics tools. As a proof of concept, we present a reanalysis
of three published cone snail venom gland transcriptomes from
Conus marmoreus (Dutertre et al., 2013; Lavergne et al., 2013),
which was used for the original benchmarking of ConoSorter, Conus
miles (Jin et al., 2013), and C. geographus (Dutertre et al., 2014).With
the exception of two highly divergent superfamilies reported from

C. geographus, and the S-superfamily sequences from C. marmoreus
that were reported at low levels in the original analysis, we quickly
discovered all previously reported superfamilies represented by at
least two reads in our reanalysis. In addition, we discovered several
superfamilies that were missed previously, including putative new
superfamilies, and reclassified some misclassified sequences. Thus,
our pipeline approach has demonstrated utility and efficiency for
the analysis of large venom gland transcriptomes from Conidae.
Although this method was designed to identify conotoxins from
next generation data sets due to the availability of standalone
programs such as ConoSorter and large volumes of next-generation
sequencing data (Prashanth et al., 2014), it is adaptable to the study
of other venomous animals such as snakes or spiders.

2. Materials and methods

2.1. Sequence analysis pipeline

Our pipeline approach is outlined in Fig. 1. Specifically, raw data
from sequencing experiments is either assembled (Illumina) using
assemblers such as SOAPdenovo (Xie et al., 2014) or Trinity
(Grabherr et al., 2011) or filtered based on the raw read quality
score (454-pyrosequencing) using programs such as QTrim
(Shrestha et al., 2014) or NGS QC Toolkit (Patel and Jain, 2012). In
our pipeline, a stringent quality control score of 30 is used to
remove low quality reads. Quality controlled data is then sorted
initially using ConoSorter, which translates raw cDNA sequences
into six reading frames and extracts sequences from the first start
codon in each read to the first subsequent stop codon. Extracted
sequences are then searched against a training dataset comprised
of sequences from the Conoserver (Kaas et al., 2008, 2012) database
using Regular Expressions first to sort the sequences. ConoSorter
also calculates class and superfamily scores ranging from 0 to 3
based on the similarity of the predicted signal-, pro- and mature
regions of the sequences to known toxin classes and superfamilies
with a score of 3 indicating matches for each region and 0 indi-
cating no matches. The total class and superfamily scores for each
sequence are calculated by adding the scores of each region of the
sequence. The sequences are then classified into their respective
superfamilies based on these similarities. Sequences that could not
be sorted into known superfamilies by Regular Expressions are
then subjected to a pHMM-based scan against profiles generated
from the conotoxin training dataset. The pHMM module returns e-
values for each matched section indicating the quality of the match
(Lavergne et al., 2013).

Sequences that were unequivocally identified by ConoSorter are
then separated, while the remaining unclassified sequences are
further analysed in the pipeline. The sequences from the regular
expression file are filtered based on number of reads (n � 2),
sequence length (Sequence length > 50 amino acids), hydropho-
bicity of the signal region (Hydrophobicity > 50), class score
(Score � 2), superfamily score (Score � 1), with sequences con-
taining unrecognised amino acids removed. For sequences in the
pHMM, an e-value cut-off (superfamily e-value < 0.0001) was
implemented to prevent false identification of sequences as con-
otoxins in place of the class and superfamily scores. The other
filtering parameters applied to sequences in the regular expression
files are then applied to those in the pHMM file. Filtered sequences
from each file are pooled and any duplicates removed.

To classify sequences into superfamilies, signal regions from
filtered sequences are extracted using SignalP and sequences
lacking signal regions discarded. Sequences are then clustered
based on their signal sequences using the program CD-HIT using a
signal peptide identity threshold of 75%. Representative sequences
from each cluster are then annotated using BLASTp against the non-
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