Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans

Stephen Dingley ${ }^{\text {a }}$, Erzsebet Polyak ${ }^{\text {a }}$, Richard Lightfoot ${ }^{\text {b }}$, Julian Ostrovsky ${ }^{\text {a }}$, Meera Rao ${ }^{\text {a }}$, Todd Greco ${ }^{\text {b }}$, Harry Ischiropoulos ${ }^{\text {b }}$, Marni J. Falk ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{\mathrm{b}}$ Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA

ARTICLE INFO

Article history:

Received 21 July 2009
Received in revised form 30 October 2009
Accepted 3 November 2009
Available online 10 November 2009

Keywords:

Complexes I, II, and III
MnSOD
Membrane potential
MitoSOX
TMRE
Fluorescence microscopy

Abstract

Mitochondrial dysfunction and associated oxidant stress have been linked with numerous complex diseases and aging largely by in vitro determination of mitochondria oxidant production and scavenging. We applied targeted in vivo fluorescence analyses of mitochondria-dense pharyngeal tissue in Caenorhabditis elegans to better understand relative mitochondrial effects, particularly on matrix oxidant burden, of respiratory chain complex, MnSOD, and insulin receptor mutants displaying variable longevity. The data demonstrate significantly elevated in vivo matrix oxidant burden in the short-lived complex I mutant, gas-1(fc21), which was associated with limited superoxide scavenging capacity despite robust MnSOD induction, as well as decreased mitochondria content and membrane potential. Significantly increased MnSOD activity was associated with in vivo matrix oxidant levels similar to wild-type in the long-lived respiratory chain complex III mutant, isp-1(qm150). Yet, despite greater superoxide scavenging capacity in the complex III mutant than in the significantly longer-lived insulin receptor mutant, daf-2(e1368), only the former showed modest oxidative stress sensitivity. Furthermore, increased longevity was seen in MnSOD knockout mutants (sod-2(ok1030) and sod-2(gk257)) that had decreased MnSOD scavenging capacity and increased in vivo matrix oxidant burden. Thus, factors beside oxidant stress must underlie RC mutant longevity in C. elegans. This work highlights the utility of the C. elegans model as a tractable means to non-invasively monitor multi-dimensional in vivo consequences of primary mitochondrial dysfunction.

© 2009 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

1. Introduction

Oxidative stress resulting from increased production of reactive species and/or concomitant decline in antioxidant scavenging capacity may damage proteins, lipids, nucleic acids and other cellular structures (Valko et al., 2006). Such multi-faceted cellular damage may contribute to many sporadic (Schapira, 2006) and inherited (DiMauro, 2004) mitochondrial diseases and aging (Rea et al., 2007). Up to 2% of total oxygen consumed by the mitochondrial respiratory chain (RC) in in vitro studies, and 0.2% under more

[^0]physiologic conditions (Balaban et al., 2005), has been shown to be improperly reduced to generate superoxide, which is then released into the matrix primarily from complex I (Murphy, 2009) or intermembrane space exclusively from complex III (Chen et al., 2003; Murphy, 2009). Superoxide dismutase (SOD) offers a primary oxidant defense through rapid conversion of superoxide radicals into hydrogen peroxide and oxygen. Three human SOD proteins localize to different subcellular compartments, where SOD2 encodes the manganese SOD that functions within the mitochondria matrix.

Assessing the relative balance of oxidant production and scavenging in vivo remains a significant challenge (Yang et al., 2007). The development of small, lipophilic molecules that emit fluorescence only in the oxidized form has permitted a method of semi-quantitative evaluation of oxidant burden in cellular model systems. In particular, mitochondria-specific oxidant levels can be assessed using the fluorescent probe, MitoSOX Red, a lipophilic hydroethidine (HE) derivative that accumulates 100 - to 1000 -fold within mitochondria due to charge attraction of its triphenylphosphonium cation through the mitochondria membrane bilayers into the negatively-charged mitochondria matrix (Robinson et al.,
2008). Mitochondria-generated oxidants react with MitoSOX to yield two primary fluorescent products, a 2-hydroxyethidium derivative ($2-\mathrm{OH}-\mathrm{Mito}-\mathrm{E}^{+}$) resulting from superoxide oxidation, and Mito-E ${ }^{+}$, a non-specific oxidized product (Zielonka et al., 2008). Reliable interpretation of fluorescence analyses that rely upon mitochondria membrane potential (DeltaPsi(m) or $\Delta \Psi_{\mathrm{m}}$) for dye distribution may be subject to diminished or enhanced dye uptake, although several fluorescent dyes are now commonly used for in vitro $\Delta \Psi_{\mathrm{m}}$ assessment (O'Reilly et al., 2003). Membrane potential indicator dyes have recently been applied in vivo in the model animal, Caenorhabditis elegans (Gaskova et al., 2007; Zuryn et al., 2008).
C. elegans offers a facile model in which to study a host of in vivo mitochondria functions. Nematodes incorporate ingested fluorescent dyes into their cells and are optically transparent, which permits precise assessment of tissue and cellular dye localization. Furthermore, several well-characterized C. elegans strains harboring mutations in nuclear genes encoding mitochondrial proteins are easily accessible (www.wormbase.org). However, assessing mitochondria functions by quantitative analysis of whole animal fluorescence may be limited by non-specific binding of lipophilic, fluorescence-based reagents, particularly within the lipid-rich granules of the gastrointestinal tract (Clokey and Jacobson, 1986). Thus, we sought to identify C. elegans tissues having high metabolic activity that might offer a focus for the further study of mitochondria physiology. C. elegans actively transports and grinds food (i.e., bacteria) between its mouth and intestines through a muscle-tube-like pharynx, which consists largely of anterior and terminal pharyngeal bulbs (PB) joined by an isthmus (Altun and Hall, 2008). The pharynx shares several similarities with the mammalian heart including near-continuous and intrinsic myogenic electrical activity (up to 250 beats per minute) (Avery and Horvitz, 1989), electrical coupling between muscle cells (Starich et al., 1996), calcium-based action potentials (Shtonda and Avery, 2005), and high mitochondria density (Altun and Hall, 2008). Capitalizing on these anatomical features and the existence of well-characterized C. elegans mutants, we evaluated the relative in vivo mitochondria oxidant production and mitochondria membrane potential ($\Delta \Psi_{\mathrm{m}}$) in RC and insulin receptor mutants displaying variable longevity, as well as in MnSOD mutants with primary impairment of mitochondria superoxide scavenging capacity. We demonstrate that C. elegans offers a powerful model in which to assess the in vivo, multi-dimensional consequences of mitochondrial dysfunction, as well as explore the complex relationship between oxidant stress and longevity under varying genetic and environmental conditions.

2. Methods

2.1. Strains growth and maintenance

C. elegans worm strains were obtained from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN) (Table 1). Strains studied included wild-type (N2 Bristol), three mitochondrial RC mutants in complexes I, II, and III [gas-1(fc21), mev1 (kn1), isp-1(qm150), respectively], and the insulin receptor mutant (daf-2(e1368)). All superoxide scavenging (MnSOD) mutant strains studied harbored loss-of-function mutations, including two sod-2 alleles [sod-2(gk257) is homozygous for a complex mutation characterized by an 18 basepair insertion and 159 basepair deletion; sod-2(ok1030) has a 900 basepair homozygous deletion] and a single allele of sod-3 [sod-3(gk235) is homozygous for a complex rearrangement characterized by a six basepair insertion and 390 basepair deletion] (www.wormbase.org). Nematodes were grown at $20^{\circ} \mathrm{C}$ on nematode growth media (NGM) plates spread with OP50 Escherichia coli. For all fluorescent studies, synchronous young adult populations were obtained by bleaching gravid adults on NGM plates (Hope, 1999), plating the recovered eggs onto unspread NGM plates overnight, and then transferring L1-arrested animals the next day to NGM plates spread with OP50 E. coli. Upon reaching adulthood (defined by the presence of eggs laid on the plate), nematodes were washed off in S. basal ($3.4 \mathrm{~g} \mathrm{KH} \mathrm{KO}_{4}$, $4.4 \mathrm{~g} \mathrm{~K}_{2} \mathrm{HPO}_{4}, 5.85 \mathrm{~g} \mathrm{NaCl}, 11$ water, pH 7.0) and adults were separated from eggs by gravity. For mass spectrometry study of whole worm aliquots (see below) as well as for mitochondria isolation, nematodes were grown at $20^{\circ} \mathrm{C}$ on 20 large NGM plates spread with OP50 E. coli for two generations, and then grown in 11 liquid culture flasks with K 12 E . coli at 200 rpm in $20^{\circ} \mathrm{C}$ incubators (I26/R Series, New Brunswick Scientific, Edison, NJ). Worms were harvested from liquid culture, as previously described (Falk et al., 2006; Hope, 1999).

2.2. Lifespan assessment

Animals were maintained at $20^{\circ} \mathrm{C}$ throughout the experiment. Synchronized nematode cultures were initiated by bleaching young adults to obtain eggs. Collected eggs were allowed to hatch overnight on 10 cm unspread NGM plates, after which L1-arrested larvae were transferred to 10 cm NGM plates spread with OP50 E. coli. Upon reaching the first day of egg laying, synchronous young adults were moved to fresh 3.5 cm NGM plates seeded with OP50 E. coli (lifespan experiment "Day 0"). For purposes of higherthroughput lifespan screening by preventing offspring from nema-

Table 1

C. elegans strain name	Gene function (human homolog)	Mutation type	Human-worm protein similarity (\%)	Lifespan ($20{ }^{\circ} \mathrm{C}$)			
				Interpretation	Median	Mean	Maximum
N2 Bristol	-	Wild-type	-	vs. RC Mutants	14	16.9	21
				vs. MnSOD mutants*	17	19.9	23
gas-1 (fc21)	Complex I subunit (NDUFS2)	Missense	83.4	Short-lived	12	15.6	20
mev-1 (kn1)	Complex II subunit (SDH-C)	Missense	75.3	Unchanged	14	16.4	22
isp-1 (qm150)	Complex III subunit (UQCRFS1)	Missense	97.5	Long-lived	20	22.4	31
daf-2 (e1368)	Insulin receptor (IR)	Missense	62.0	Long-lived	31	31.1	38
sod-2 (gk257)	Mitochondrial MnSOD (SOD2) - C. elegans chr. X	Knockout	97.3	Long-lived*	19	20.7	24
sod-2 (ok1030)	Mitochondrial MnSOD (SOD2) - C. elegans chr. X	Knockout	97.3	Long-lived*	20	21.6	25
sod-3 (gk235)	Mitochondrial MnSOD (SOD2) - C. elegans chr. I	Knockout	97.2	Long-lived*	18.5	20.0	23

 mutant are provided in Supplementary Fig. S4.

* Indicates concurrent wild-type (N2 Bristol) control for MnSOD mutant lifespan comparison.

https://daneshyari.com/en/article/2069008

Download Persian Version:
https://daneshyari.com/article/2069008

Daneshyari.com

[^0]: Abbreviations: C. elegans, Caenorhabditis elegans; MnSOD, manganese superoxide dismutase; RC, respiratory chain; PB, pharyngeal bulb.

 * Corresponding author. Address: ARC 1002c, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA. Tel.: +1 215590 4564; fax: +1 2674262876.

 E-mail addresses: stephen.dingley@gmail.com (S. Dingley), polyake@email.chop. edu (E. Polyak), lightfoot@email.chop.edu (R. Lightfoot), ostrovskyj@email.chop.edu (J. Ostrovsky), meerao@sas.upenn.edu (M. Rao), tgreco@mail.med.upenn.edu (T. Greco), ischirop@mail.med.upenn.edu (H. Ischiropoulos), falkm@email.chop.edu (M.J. Falk).

