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1. What are the challenges in formalizing biology today?

Formalization of any kind presumes the prior presence of
something concrete and particular. Recognizing this in biology is
not easy (Waddington, 1966, 1968e1972, 1974). Many biological
phenomena do not have adequate mathematical representations.
This is because living systems are deploying logic and semiotics
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beyond our conception of mathematics into the domain of
computation, which is on its part much richer than the standard
Turing machine paradigm. In particular, there are four areas
deserving attention with broad impacts in and beyond biology
(Root-Bernstein, 2012a):

1. A theory of self-emergent objects that can carry out functions
within interactive variances of the constituents of living
systems: developing models of self-emergent objects (origins
of first cells; self-assembly of viruses, etc.) that carry out
functions (selecting/rejecting among possible components;
minimizing free energy; etc.) while utilizing both continuous
and discrete information. Set theory is too abstract to handle
such "objects"; they have more structure and other proper-
ties than sets and the elements of sets. Therefore self-
emergent objects must be defined in a frame where their
different qualities can be described. Such a theory should be
able to incorporate the work that has been done on under-
standing hierarchical systems, emergent properties,
complexity theory, etc. Its mathematics should therefore be
extraordinarily integrative. A subsumptive or specification
hierarchy is more general than set theory and could be the
first step in this direction.
There are two fundamental issues to be taken in consideration.
First, cells are autonomous/autopoietic e they form them-
selves. Therefore, we need to use a frame in which we can
describe self-organizing/self-emergent objects mimicking
“cellular life” as evolution of such objects using specifications
of the relations between them that do provide rules i) to limit
the entry and exit of individual elements, and ii) allow ele-
ments to undergo transformations (e.g. metabolism) within
the object. A key question to answer here is whether the self
(the individuumwith a distinct identity) is a prerequisite for or
a consequence of the self-organization? Second, biological
objects (cells) have the variance property.1 We need a theory
that allows the definition of objects that are not characterized
by specific numbers, proportions and rates of turnover,
excretion and replenishment of the object/cell constituents,
but i) by (empirically determined) variances (number ranges)
within which all of these constituents must exist in order for
the living object to function as such (Zadeh, 2000; Kauffman,
2001), and ii) with the self being potentially associated with
these variances.
This “bio-affine” theory must allow the integration of contin-
uous and “grainy”/discrete temporalities for the same "object"
simultaneously: a circular relation of i) handling continuous
variations of the chemical kinetics, e.g. continuous in-
teractions/flows of elements, while ii) acting on small sets of
definable/discrete elements/individuals (calculations of
modular probabilities) determined by the chemical kinetics.
Also, it should have operators/functions capable of defining
state-sensitive objects, i.e. to model switching processes be-
tween stable states when certain values or variances (within
them) are exceeded.

2. A theory of complementary assembling: biological systems build
and organize themselves based on the principle of molecular
complementarity to produce robust aggregates/modules. Such
a theory is therefore important, because the formation of
complementary (symmetric or asymmetric/chirality) modules

within complex systems can prune out huge numbers of un-
feasible possibilities at each step of the hierarchical modular
assembly.

3. A qualia jump2 theory: Mathematics generally treats either
scalar quantities or vector quantities (statically defined), but
not the transformation of scalar to vector (dynamic type tran-
sitions). However, some properties of biological systems
involve transformations from pure scalar to pure vector
quantities (and vice versa): e.g. a chemical neurotransmitter
signal (scalar diffusion) becomes a directional electrical signal
(a vector).

4. A hidden morphology theory: the linkage between form and
function.
The mathematical challenges involved in attempting to model
biological form-function interactions are far from trivial. Nat-
ural selection attempts to optimize forms to carry out partic-
ular functions, but since novel functions evolve from existing
forms, these formal attempts may be seriously limited. On the
one hand, we do not have geometrical tools that can easily
model processes such as the complex folding of proteins or
chromosomes, or detailed embryological development.
Mathematical forms share little with the actual biological
processes that give rise to these structures. The mathematical
abstractions currently used in system biological models
generally do not illuminate the processes that give rise to
biological geometries, but only their outward forms despite
the work of René Thom (1994). What is interesting about
biological forms, however, is not their geometry per se, but the
ways in which these forms are reifications of the biochemical
processes which they carry out or make possible. For example,
it has become evident that the folding of chromosomes is a
prerequisite to bringing together genes that would otherwise
be spatially separated; and also that spatial proximity permits
the rapid diffusion and control of interactive gene products
that would otherwise be unable to interact in a reasonable
biological time frame across an unfolded genome (Junier et al.,
2010). Similarly, in human developmental biology we have
now excellent data concerning the sets of genes that must be
turned on and when they must be activated or inactivated in
order to produce proper embryological development, yet the
discrete information generated from combinations of individual
genes is expressed as a continuous flow of proteins and hor-
mones that produce gradients which must be reified as orga-
nized groupings of cells that have a specific form. So
embryology is also stymied by the lack of mathematical ap-
proaches that can link discrete, continuous and geometrical
information simultaneously. But what kind of mathematical
notions would make it possible to model simultaneously the
effects of geometry (spatial structure) on continuous functions
such as diffusion that in turn regulate on-off gene regulatory
switches that act discontinuously or digitally? And how can a
mathematical object obtain and maintain its identity? Also,
Lewontin has stressed the reciprocal relationships between
genes, organisms and their environment, in which all three el-
ements act as both causes and effects (Lewontin, 2002).
Therefore, we should be able to explore alternative avenues to
traditional unidirectional genotypeephenotype relationships
such as cyclic or helical or chaotic genotype-phenotype
mappings.

1 Any given cell must have chromosomes, but their number can vary (as they do
in cancers and parthenogenesis) and still be viable; they can have many ribosomes
and mitochondria or but a few and still live; they can accumulate certain amounts
of toxins or lose a certain amount of key ions and still function; etc.

2 A quale is an individual instance of subjective, conscious experience, "an un-
familiar term for something that could not be more familiar to each of us: the ways
things seem to us” (Dennet, 1988).
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