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I will explain how the mathematicians have discovered the universal numbers, or abstract computer, and
I will explain some abstract biology, mainly self-reproduction and embryogenesis. Then I will explain
how and why, and in which sense, some of those numbers can dream and why their dreams can glue
together and must, when we assume computationalism in cognitive science, generate a phenomeno-
logical physics, as part of a larger phenomenological theology (in the sense of the greek theologians). The
title should have been “From Biology to Physics, through the Phenomenological Theology of the Universal
Numbers”, if that was not too long for a title. The theology will consist mainly, like in some (neo)platonist
greek-indian-chinese tradition, in the truth about numbers' relative relations, with each others, and with
themselves. The main difference between Aristotle and Plato is that Aristotle (especially in its common
and modern christian interpretation) makes reality WYSIWYG (What you see is what you get: reality is
what we observe, measure, i.e. the natural material physical science) where for Plato and the (rational)
mystics, what we see might be only the shadow or the border of something else, which might be non
physical (mathematical, arithmetical, theological, …).

Since G€odel, we know that Truth, even just the Arithmetical Truth, is vastly bigger than what the
machine can rationally justify. Yet, with Church's thesis, and the mechanizability of the diagonalizations
involved, machines can apprehend this and can justify their limitations, and get some sense of what
might be true beyond what they can prove or justify rationally.

Indeed, the incompleteness phenomenon introduces a gap betweenwhat is provable by some machine
and what is true about that machine, and, as G€odel saw already in 1931, the existence of that gap is
accessible to the machine itself, once it is has enough provability abilities. Incompleteness separates truth
and provable, and machines can justify this in some way.

More importantly incompleteness entails the distinction between many intensional variants of
provability. For example, the absence of reflexion (beweisbar(£A·) / A with beweisbar being G€odel's
provability predicate) makes it impossible for the machine's provability to obey the axioms usually taken
for a theory of knowledge.

The most important consequence of this in the machine's possible phenomenology is that it provides
sense, indeed arithmetical sense, to intensional variants of provability, like the logics of provability-and-
truth, which at the propositional level can be mirrored by the logic of provable-and-true statements
(beweisbar(£A·) ∧ A). It is incompleteness which makes this logic different from the logic of provability.
Other variants, like provable-and-consistent, or provable-and-consistent-and-true, appears in the same
way, and inherits the incompleteness splitting, unlike beweisbar(£A·) ∧ A. I will recall thought experi-
ence which motivates the use of those intensional variants to associate a knower and an observer in
some canonical way to the machines or the numbers.

We will in this way get an abstract and phenomenological theology of a machine M through the true
logics of their true self-referential abilities (even if not provable, or knowable, by the machine itself), in
those different intensional senses.

Cognitive science and theoretical physics motivate the study of those logics with the arithmetical
interpretation of the atomic sentences restricted to the “verifiable” (S1) sentences, which is the way to
study the theology of the computationalist machine. This provides a logic of the observable, as expected
by the Universal Dovetailer Argument, which will be recalled briefly, and which can lead to a comparison
of the machine's logic of physics with the empirical logic of the physicists (like quantum logic). This leads
also to a series of open problems.
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1. The discovery of the universal numbers

It all begun with Cantor set theory. Galilee and Gauss were
already aware that the function which sends each non negative
integers n on 2nwas a bijection, that is a oneeone correspondence,
although they did not use this terminology. They saw that infinite
sets, like N, can be put in such a bijective correspondence with a
subset of themselves, and concluded that we should better avoid to
make such infinite set into actual infinite mathematical objects.
This will remain so until Cantor, and it is not without courage that
Cantor will reconsider this question and accept such infinite sets as
legal citizen of the mathematical inquiry. Using a naive notion of
set, Cantor will show the existence of bijection between the sets N
(natural numbers, non negative integers), and Z (integers), and Q
(rational numbers), and will discover that not all infinite set can be
put in that bijective 1 �1 correspondence. Indeed Cantor is famous
for proving that R, the set of real numbers, or (equivalently) the set
of infinite binary sequences, or the set of functions from N to {0,1}
or from N to N, are not enumerable, where enumerable means that
there is a bijection, or a surjection (if we allow repetition) from N to
that set. This proof plays an important role in the mathematical
discovery of computers, or universal numbers, as I will briefly
illustrate.

Cantor theorem: There is no bijection between N and the set of
functions from N to N.

Proof. Proof Let us suppose that there is a bijection from N to the
set of functions fromN to N. Let us denote by fi the functionwhich is
the image of i by that bijection. Thenwe can introduce the diagonal
function gwhich sends n to fn(n)þ 1, that is, g(n) ¼ fn(n)þ 1. That is
what I will call the first diagonalization act. g is obviously a function
from N to N. Could g belong to the list f0,f1,f2,…? Well, if it could
therewould be some fk, such that g¼ fk. In that case, by definition of
the equality of function, we have that fk(x) ¼ g(x) for all x, and in
particular fk(k) ¼ g(k). Applying fk on itself, or on some description
of itself (which here will always be represented by some index
number), is what I will call the second diagonalization act.

Now, g(k) is equal to fk(k)þ 1, by definition of g. So we have, by
Leibniz identity rule, that fk(k) ¼ fk(k)þ 1. As each fk is supposed to
be a well-defined function, fk(k) is a number, and by subtracting it
on both side of the last equation, we get 0¼1. Thus we can
conclude that such a bijection cannot exist.

Now, Cantor will generalize this procedure and will obtainmany
more similar results in set theory. Yet, difficulties will appear, like
Galilee and Gauss did warn us. In fact defining a set by some
properties leads to paradoxes, the most known being Russell's
paradox. Let us write XY for the statement that X belongs to Y, then
let us define the set E of all sets which does not belong to them-
selves: XE iff : XX, then we get EE iff : EE.

In front of such paradoxes, there will be mainly three reactions
by the mathematicians. One will be the impetus to formalize the
notions, in a way which avoids the paradoxes. This will lead to a
variety of set theories (ZermeloeFraenkel, Quine New Foundations,
Von Neumann Bernays G€odel, etc). A second reaction will be more
radical, and will throw away the use of the excluded middle prin-
ciple (Brouwer's Intuitionism), and the last one, which can be
related in many ways to the preceding one, will be an attempt to
work on sets which are not too much large, and in particular to try,
when possible, to restrict oneself to computable or constructive
notions. This will lead many mathematicians to define what is a
computable function, which is one step toward the discovery of the
universal machine, or universal number. So what could be a
computable function?

The intuitive idea is that a function from N to N is computable
when we can describe in a finite time, with a non ambiguous

language L, how to compute it, in a finite time, on each (finite)
input. Such description are called algorithm or procedure.

But is there a universal language capable to describe all
computable functions from N to N? When Alonzo Church claimed
that his “Lambda Calculus” provides such a universal language, his
student Kleene was at first quite skeptical, and he tried to refute
that claim by using Cantor's diagonal procedure (which enabled
already G€odel to show that there is no universal provability system).
Indeed, thought Kleene, if a universal language L (universal with
respect of defining the notion of computable function) exists, then
we know that such a set of computable functions has to be
enumerable. The reason is that the finite descriptions of the pro-
cedures can be listed. Indeed, they are non ambiguously described,
and thus the description have a simple checkable grammar, and so
we can order them by lengthdand for those having the same
length, we can sub-order them by alphabetical order, assuming
some primitive order on the (finite) alphabet of the language. So if a
universal language L exists, we would have an enumeration
40,41,42,… of all computable functions from N to N.

All right, but then we can define (again) a function g such that
g(n)¼ 4n(n)þ 1. All 4n are computable, and “adding one” is without
doubt computable. So g should be computable, and should admit a
procedure and thus some description in the supposedly universal
language L. This means that there is a k such that g¼ 4k, and thus, in
particular g(k) ¼ 4k(k), and again 4k(k) ¼ 4k(k)þ 1. All 4i are
computable, so 4k(k) is a number that we can again subtract from
both sides of the last equation, and get 0¼1.

Now, it looks we are in trouble. We have certainly not prove that
the set of computable functions is not enumerable, as the set of all
strings in the alphabet, and the subset of the grammatically correct
strings (describing procedures) are clearly enumerable by the
argument given above. So it looks like Kleene has simply refuted
Church's claim that his language, or any language, can describe all
computable functions. But looking more closely, Kleene will un-
derstand that he has not done that. Kleene's proof just proves that
there is no universal language L computing all and ONLY all
computable functions fromN to N. In particular, if L is built in such a
way that all procedures compute functions from N to N, then
indeed L is not universal. But, this shows that IF a universal lan-
guage exists, then itmust also computes other things. I guess Kleene
already knew that the lambda-calculus expression(lx.xx)(lx.xx)
gives a non terminating procedure, and those “other things”will be
of that type. This saves the consistency of Church's claim: the
apparent paradox in 4k(k) ¼ 4k(k)þ 1 does not obtained, because
the computation of 4k(k) will just not terminate. In the computer's
jargon, 4k(k) crashes the machine. Kleene said that overnight, after
having been skeptical, he will become an ardent defender of
Church's thesis. Indeed, he gave the most conceptual and profound
argument in favor of the Church's thesis: the closure of the set of
partial computable functions for Cantor's transcendental diago-
nalization procedure, where a partial computable function is now a
function from a subset (perhaps equal to N, or empty) to N. We will
say that a function fromN to N is total if it is defined on all numbers,
and wewill use the term partial function if its domain is a subset of
N. Partial functions generalize the notion of function, usually
considered total on their domain.

Cantor showed that the set of functions from N to N is not
enumerable, Kleene did show that the subset of total computable
functions, although enumerable, is not computably or recursively
enumerable. If this seems a bit weird, keep in mind that although a
subset cannot be bigger than the set inwhich it is a subset, it can be
more complex, like the painting of the Mona Lisa is more complex
than the paper area on which it is painted, or like the Mandelbrot
set, a subset of the complex plane C, looks much more complex
(apology for the pun) than C.
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