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a b s t r a c t

In the 1880’s Volterra characterised a nonlinear system using a functional series connecting continuous
input and continuous output. Norbert Wiener, in the 1940’s, circumvented problems associated with the
application of Volterra series to physical problems by deriving from it a new series of terms that are
mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970’s,
introduced a point-process analogue of Volterra’s series connecting point-process inputs to the instan-
taneous rate of point-process output. We derive here a new series from this analogue in which its terms
are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned
input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous
rate of an output point-process. Given experimental records of suitable duration, the contribution of
arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and
quadratic point-process models with one and two inputs and a single output are investigated. Our
theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary
and secondary endings from the same muscle spindle are recorded in response to stimulation of one and
then two static fusimotor axons in the absence and presence of a random length change imposed on the
parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit
which patterns of two input spikes contribute to an output spike.

� 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
2. Point process systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

2.1. Linear point-process models and associated point-process parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.2. P-functional series for point-process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2.1. P-functional series for single-input single-output linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2.2. P-functional series for two-input single-output linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3. Quadratic point-process models and associated point-process parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.1. P-functional series for single-input single-output quadratic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.2. P-functional series for two-input single-output quadratic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3. Isolated mammalian muscle spindle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1. Linear kernels: Second-order interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2. Quadratic kernels: Third-order interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1. Nonlinear interactions in the response of the secondary ending to fusimotor stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2. Nonlinear interactions in the response of the primary ending to fusimotor stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

* Corresponding author. Tel.: þ44 0 141 330 5177; fax: þ44 0 141 330 4111.
E-mail addresses: kenneth.lindsay@glasgow.ac.uk (K.A. Lindsay), j.rosenberg@bio.gla.ac.uk (J.R. Rosenberg).

Contents lists available at SciVerse ScienceDirect

Progress in Biophysics and Molecular Biology

journal homepage: www.elsevier .com/locate/pbiomolbio

0079-6107/$ e see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.pbiomolbio.2012.06.001

Progress in Biophysics and Molecular Biology 109 (2012) 76e94

mailto:kenneth.lindsay@glasgow.ac.uk
mailto:j.rosenberg@bio.gla.ac.uk
www.sciencedirect.com/science/journal/00796107
http://www.elsevier.com/locate/pbiomolbio
http://dx.doi.org/10.1016/j.pbiomolbio.2012.06.001
http://dx.doi.org/10.1016/j.pbiomolbio.2012.06.001
http://dx.doi.org/10.1016/j.pbiomolbio.2012.06.001


5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1. Introduction

The primary aim of this paper is to develop linear and
quadratic models of point-process systems of the type defined in
general by Brillinger (1975a), and to illustrate their application to
a particular biological system (the mammalian muscle spindle).
These models are analogous to the Volterra representation of
nonlinear systems with continuous input and output, and were
shown by Volterra to be characterisable by a series of multivariate
convolution integrals (Volterra, 1959). Wiener (1958) developed
a procedure for transforming the terms of the Volterra series into
an equivalent series of terms that are mutually uncorrelated with
respect to a white noise input.1 The advantage of the Wiener
representation of the Volterra model is that each term of the
former defines an invariant property of the model so that adding
further terms to the Wiener series does not change terms previ-
ously determined. By contrast, adding further terms to the Vol-
terra representation of a system changes terms previously
determined.

The development of the linear and quadratic point-process
models here will show how to re-express these models in
a form in which terms of its series representation are mutually
uncorrelated with respect to Poisson input. This formulation of
the model is the point-process equivalent of the Wiener repre-
sentation of the Volterra series for a system with continuous
input and output. It will be seen that the terms of this repre-
sentation are invariant properties of the system in the sense that
the addition of further terms to the series leaves unchanged
terms previously determined. Moreover, each term of the new
series has an immediate physical interpretation. In this context
the work of Ogura (1972) as well as that of Hida (1970) and
Krausz (1975) on orthogonal polynomials for Poisson processes is
relevant.

By contrast with the non-parametric methods to be discussed in
this paper, we mention another approach to the identification of
point-process systems based on the use of maximum likelihood
methods. In this method spike-generating models of the system are
proposed and the parameters of these models are subsequently
estimated from input and output data. One strategy is to model the
conditional intensity function of the output process in terms of the
history of the input point-processes and that of other relevant
factors (Truccolo et al., 2005). Another strategy, which also models
the conditional intensity function, is based on an integrate-to-
threshold-and-fire model incorporating a stochastic threshold
and other features that allow for spontaneous activity and
a refractory period (Brillinger and Segundo, 1979; Brillinger, 1988a,
b; Brillinger et al., 2009). The aim of eachmodel is to use the history
of the input processes, in combination with other factors that are
thought to influence the output process, to construct the proba-
bility of an output spike for that model. From these probabilities,
the probability (or likelihood) of observing the given output
processes may be calculated. The aim of maximum likelihood is to
find the values of the parameters of the model which maximise the

likelihood that the observed output is a realisation of the model for
the given input processes. Among the attractive features of the
maximum likelihood method is that the statistics of the input
processes are not relevant to the analysis and that these processes
can be non-stationary. One objective of this approach is to assess
patterns of connectivity within networks of neurons.

The plan of this article is as follows. Section 2 introduces the
linear and quadratic point-process models analogous to the Vol-
terra series representation of nonlinear systems with continuous
input and output, and re-expresses these models in a form analo-
gous to the Wiener representation of the Volterra models. Single-
input single-output and two-input single-output linear and
quadratic models are investigated, the former for Poisson and
general input and the latter for Poisson input alone. For both the
linear and quadratic models the relation between the Volterra
representation and the point-process analogue of theWiener series
is made explicit. It is also shown in this section that third-order
cumulants can be interpreted in terms of the traditional neuro-
physiological conditioning-pulse/test-pulse experimental para-
digm, and that the utility of Poisson inputs is that all conditioning-
pulse/test-pulse intervals are included, with the consequence that
third-order interactions illustrate which patterns of input are
effective in contributing to an output and which patterns are not.
Section 3 presents a brief description of the experimental data used
to illustrate the application of the linear and quadratic point-
process models. Section 4 sets out the results in which it is
demonstrated how third-order interactions contribute to second-
order interactions when additional inputs are added to the
system. Section 5 interprets the point-process analogue of the
Wiener series for systems with continuous input and continuous
output as giving a relation between the instantaneous rate of the
output process and a particular combination of patterned input.

2. Point process systems

Brillinger (1975a) suggests that an important feature of point-
process systems is the instantaneous rate at which the probability
of an output event is generated either in the absenceof input or given
the history of the input process. Assuming that the point-processes
are orderly, i.e., at most one event can occur in any process during
the interval (t, tþ Dt] for suitably small nonzero values of Dt, then in
the caseof a single-input single-outputpoint-process systemwithM
as input process and N as output process, this instantaneous rate,
denoted by mðtjMÞ, is given by the value of the limit

mðtjMÞ ¼ lim
Dt/0þ

Prob fAn N event in ðt; t þ Dt� jMg
Dt

: (1)

In the neurophysiological literature mðtjMÞ is often estimated by
averaging the spike train response to repeated trials using the same
stimulus (e.g., Marmarelis andNaka,1974; also, seeMatthews (1972,
pp. 173e176) for a brief discussion of different averaging methods).

A second important consequence of orderly processes is that
definition (1) has the interpretation

EN ½dNðtÞjM� ¼ mðtjMÞdt þ oðdtÞ; (2)

1 For an elementary introduction to Volterra series and its relation to the Wiener
theory of nonlinear systems see Marmarelis and Marmarelis (1978), and for a more
advanced treatment Marmarelis (2004) or Schetzen (1980).
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