

Available online at www.sciencedirect.com

Progress in Biophysics & Molecular Biology

Progress in Biophysics and Molecular Biology 90 (2006) 104–117

www.elsevier.com/locate/pbiomolbio

Review

Voltage- and calcium-dependent inactivation in high voltage-gated Ca²⁺ channels

T. Cens, M. Rousset, J.-P. Leyris, P. Fesquet, P. Charnet*

CNRS CRBM FRE 2593, 1919 Route de Mende, 34293 Montpellier, France

Available online 1 July 2005

Abstract

Calcium influx into cardiac myocytes via voltage-gated Ca channels is a key step in initiating the contractile response. During prolonged depolarizations, toxic Ca^{2^+} overload is prevented by channel inactivation occurring through two different processes identified by their primary trigger: voltage or intracellular Ca^{2^+} . In physiological situations, cardiac L-type ($\text{Ca}_{v}1.2$) Ca^{2^+} channels inactivate primarily via Ca^{2^+} -dependent inactivation (CDI), while neuronal P/Q ($\text{Ca}_{v}2.1$) Ca^{2^+} channels use preferentially voltage-dependent inactivation (VDI). In certain situations however, these two types of channels have been shown to be able to inactivate by both processes.

From a structural view point, the rearrangement occurring during CDI and VDI is not precisely known, but functional studies have underlined the role played by at least 2 channel sequences: a C-terminal binding site for the Ca^{2+} sensor calmodulin, essential for CDI, and the loop connecting domains I and II, essential for VDI. The conserved regulation of VDI and CDI by the auxiliary channel β subunit strongly suggests that these two mechanisms may use a set of common protein–protein interactions that are influenced by the auxiliary subunit. We will review our current knowledge of these interactions. New data are presented on L-P/Q ($\text{Ca}_{\text{V}}1.2/\text{Ca}_{\text{V}}2.1$) channel chimera that confirm the role of the I–II loop in VDI and CDI, and reveal some of the essential steps in Ca^{2+} channel inactivation.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Voltage-gated calcium channels; Ca-dependent inactivation; Voltage-dependent inactivation; Calmodulin; Auxiliary subunits

^{*}Corresponding author. Tel.: 33 467 613 352; fax: 33 467 521 559. *E-mail address:* pierre.charnet@crbm.cnrs.fr (P. Charnet).

Contents

	Voltage-dependent and Ca ²⁺ -dependent inactivation of voltage-gated Ca ²⁺ channels	
2.	Determinant of Ca ²⁺ -dependent inactivation of Ca _V 1.2 channels	108
	2.1. The Ca ²⁺ sensor	108
	2.2. The C-terminus	108
	2.3. The I–II loop	110
	2.4. The N-terminus	111
	2.5. The channel pore	111
3.	The Ca ²⁺ -dependent inactivation of Ca _V 2.x channels	111
4.	A working model for VDI and CDI	112
5.	Material and methods	113
	5.1. Electrophysiological recordings on <i>Xenopus laevis</i> oocyte	113
Edi	litor's note	114
Acl	knowledgments	114
Ref	terences.	114

1. Voltage-dependent and Ca²⁺-dependent inactivation of voltage-gated Ca²⁺ channels

Calcium channels are key molecular assemblies of the plasma membrane that generate electrical and chemical signals essential for cell physiology (Catterall, 2000). These channels are composed of a central pore-forming subunit encoded by one of the ten genes (Ca_V1.1-4; Ca_V2.1-3, or Ca_V3.1–3) identified in the human genome. Each of these subunits can form a Ca²⁺ selective pore in the plasma membrane that is opened (activated) by membrane depolarization and closed by intrinsic mechanisms triggered by the same stimulating depolarization (voltage-dependent inactivation or VDI). The high-threshold Ca²⁺ channel subfamilies (encoded by Ca_V1.x or Ca_V2.x pore forming subunits) have additional mechanisms that regulate their pore opening. These include modulation by the Ca²⁺ influx generated by their own opening (Ca-dependent inactivation or CDI) and fine tuning of their electrophysiological properties by a set of modulatory subunits ($\alpha 2 - \delta$, 4 known genes; γ , 10 genes; and β , 4 genes; Arikkath and Campbell, 2003), of which the β subunit appears to be critical, modifying channel expression, activation, inactivation, regulation and pharmacology. The regulation of high-threshold Ca2+ channel inactivation by both voltage and Ca²⁺ has been shown to be essential to ensure the pertinence of the electrical and chemical signals generated by channel opening in both muscle cells and neurons (Alseikhan et al., 2002; Splawski et al., 2004), and consequently the analysis of their underlying mechanisms has been a major center of interest for many laboratories involved in the field of Ca²⁺ signaling (for review on inactivation, see Hering et al., 2000; Stotz and Zamponi, 2001b; Budde et al., 2002; Findlay, 2004).

Most of these efforts have been centered on two types of Ca^{2+} channels: the L-type ($Ca_V1.2$) and P/Q-type ($Ca_V2.1$). These channels constitute the major channel type in cardiac ventricular and cerebellar Purkinje cells, respectively. Inactivation of $Ca_V1.2$ channels is driven by both voltage and Ca^{2+} (Budde et al., 2002) and these two processes are easily separated by replacing extracellular Ca^{2+} by Ba^{2+} , a divalent cation that cannot induce CDI (see Fig. 1). Although this type of CDI can be induced by a global change in intracellular Ca^{2+} (such as that generated by the release of intracellular stores or neighboring Ca^{2+} channels), single channel recordings clearly

Download English Version:

https://daneshyari.com/en/article/2070355

Download Persian Version:

https://daneshyari.com/article/2070355

<u>Daneshyari.com</u>