

Available online at www.sciencedirect.com

Progress in Biophysics & Molecular Biology

Progress in Biophysics and Molecular Biology 91 (2006) 1-82

www.elsevier.com/locate/pbiomolbio

Review

Ca²⁺ currents in cardiac myocytes: Old story, new insights [☆]

Fabien Brette^{a,*}, Jérôme Leroy^b, Jean-Yves Le Guennec^c, Laurent Sallé^d

^aSchool of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK

^bDepartment of Pharmacology, University College London, London WC1E 6BT, UK

^cEmi-U 0211 Nutrition, Croissance, Cancer, Université de Tours, 37000 Tours, France

^dEA3212 Laboratoire de Physiologie Cellulaire, Université de Caen, 14032 Caen, France

Available online 25 February 2005

Abstract

Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca^{2+} crosses the plasma membrane via specialized voltage-gated Ca^{2+} channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca^{2+} ions to move into the cell; (ii) triggering Ca^{2+} release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca^{2+} channels also participate in excitation–transcription coupling. The purpose of this review is to discuss the physiological roles of Ca^{2+} currents in cardiac myocytes. Next, we describe local regulation of Ca^{2+} channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure–function relationship of Ca^{2+} channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca^{2+} channels α_{1D} and α_{1E} . We finally discuss the potential involvement of Ca^{2+} currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Cardiac; Myocytes; Calcium current; L-type calcium channel; T-type calcium channel; Modulation; Auto immune; Remodeling

E-mail address: f.brette@bristol.ac.uk (F. Brette).

 $^{^{\}dot{\approx}}$ Since the acceptance of this manuscript, a study showing a mutation in human Ca_v1.2 has appeared in Cell (Splawski et al., 2004). In this paper, the authors demonstrated that Timothy syndrome is linked to a missense mutation in Ca_v1.2 (G406R, at the end of S6 in the first domain, see Fig. 6). Interestingly, functional expression reveals that this mutation induces a gain of function by dramatically reducing the voltage dependent inactivation of the channel. Therefore, this mutation might explain the long OT observed in patient with this disorder.

^{*}Corresponding author. Department of Physiology, University of Bristol, Medical Sciences Building, Bristol BS8 1TD, UK.

Contents

1.	Intro	ction
2.	Physi	ogical function of cardiac Ca ²⁺ channels
	2.1.	Depolarizing current
		.1.1. Working cells (ventricular, atrial)
		.1.2. Nodal cells
		.1.3. Conducting tissue
	2.2.	Excitation–contraction coupling
		.2.1. Triggering sarcoplasmic reticulum Ca release
		.2.2. Direct activation of contraction
		.2.3. Loading of the sarcoplasmic reticulum
	2.3.	Excitation–transcription coupling
3.	Modu	tion of cardiac Ca ²⁺ channels
	3.1.	Regulation by voltage
		.1.1. Activation
		.1.2. Inactivation
		.1.3. Facilitation
	3.2.	tegulation by calcium
		.2.1. Inactivation
		.2.2. Facilitation
	3.3.	Regulation by cyclic nucleotides
		.3.1. cAMP
		.3.2. cGMP
4.	Bioph	ical structure-function of cardiac Ca ²⁺ channels
	4.1.	Molecular Structure of the predominant L-type Ca ²⁺ channel
		.1.1. Structure-function of α_{1C}
		.1.2. Structure–function of β subunit
		.1.3. Structure-function of $\alpha_2\delta$
		.1.4. Structure-function of γ
	4.2.	-type Ca ²⁺ channels
	4.3.	Molecular structure of others Ca^{2+} channels $(\alpha_{1D}, \alpha_{1E})$
5.	Cardi	Ca ²⁺ channels and physio-pathological conditions
	5.1.	Diseases with autoimmune components
		.1.1. Congenital heart block
		.1.2. Cardiomyopathies
	5.2.	Cardiac remodeling
		.2.1. Cardiac memory
		.2.2. Heart failure
		.2.3. Atrial fibrillation
6.	Conc	ions and futures directions
Ack		ements
		54

1. Introduction

The importance of extracellular Ca^{2+} in cardiac contraction has been known since the classical experiments of Ringer at the end of the XIXth century, which demonstrated that frog cardiac muscle cannot contract in Ca^{2+} free solutions (Ringer, 1883). More than half a century

Download English Version:

https://daneshyari.com/en/article/2070656

Download Persian Version:

https://daneshyari.com/article/2070656

<u>Daneshyari.com</u>