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1. Introduction

A decade of advances in nanotechnology has disclosed exciting
perspectives and innovative approaches for tissue regeneration and,
more recently, for nerve tissue repair [1,2]. Although still limited, the ap-
plication of nanotechnology-based platforms to neuroscience witnessed
an impressive growth, with an increasing amount of studies proposing
nanomaterial based scaffolds as novel tools able to tune nerve cell behav-
iour. In this scenario, carbon nanotubes are placed as timely and promis-
ing players. Such materials are at the leading edge of nanotechnology,
due to carbon nanotube well documented electrical, thermal and me-
chanical properties [3]. Carbon nanotube cylindrical morphology is rem-
iniscent of that of distal neuronal dendrites [4], small cellular processes
crucially involved in the ability of neurons to express complex computa-
tional skills. This similarity, together with carbon nanotube topographic
features, physical properties, as conductivity, and surface-to-volume
ratio [5], sets the stage for carbon nanotube exploitation in devices able
to interface neuronal physiology. This review will highlight the most
exciting findings that challenge carbon nanotubes in the neuroscience
arena.

2. Nanomaterials: supports for neuro-reconstruction

The development of neuro(prosthetic)-implants to favour the sur-
vival of damaged neurons, or axonal regrowth, and neuronal synaptic
signal transmission, holds the promise to contrast the functional im-
pairment that follows neuronal loss or degeneration. In this perspective,
the search for new materials able to support these processes appears
critical. Since a decade, nanotechnology is providing a significant contri-
bution to this field, increasingly attracting the attention of the clinical
neuroscience community [6].

Ideally, any strategy developed to repair the damaged central ner-
vous system (CNS) should address the regrowth of injured axons, the
plastic remodelling of neuronal circuitry [7] and/or the generation of
new neurons by the use of the high-potential stem cell transplantation
[8-11]. Each of these objectives requires governing several complex
processes: axons regrowth requires overcoming an unfavourable, and
inhibitory environment, documented, for example, in the injured area
after spinal cord lesions [12], and requires proper axonal spatial organiza-
tion, target recognition and the reconstruction of functional synapses.
Stem cells successful transplantation requires cell survival and appropri-
ate differentiation toward the neuronal lineage. The design of effective
strategies for neuroregeneration-supporting scaffolds has to take into ac-
count all of these steps: while some of them have been achieved in in
vitro experimental systems, their successful translation in the in vivo con-
dition is still sparsely reported.

In this scenario, neuro-repair strategies and tissue engineering are
strictly interconnected. Cells in general, and neurons in particular, are
able to self-organize in complex structures when residing in an appro-
priate physico-chemical environment, and large efforts are currently
made to develop synthetic material-based implants to be applied as
scaffolding structures to provide a biocompatible and bioactive support
for the promotion of cellular reorganization toward a functional neuro-
nal assembly [13-16]. The ideal material should meet several require-
ments. First, it should be biocompatible, non-immunogenic and it has
to avoid gliotic reactions and scar formation; second, it has to favour
neuronal differentiation (in the case of stem cell-based strategies) and
axons extension, it has to support plastic re-arrangements of resident
neuronal networks and endogenous extracellular matrix (ECM) deposi-
tion, while potentiating the residual ability of CNS neurons to regenerate
[14,17]. In this respect, synthetic nanomaterials appear as promising can-
didates: they can be produced with more control and reproducibility
than their natural counterparts (thus strongly limiting the problems of
biosafety and immunogenicity) and they can be engineered as biocom-
patible platforms able to promote neuronal regeneration across injured

areas, and to synergistically contribute to the controlled and localized de-
livery of regeneration-supporting drugs (e.g. trophic factors) [14,18].

2.1. Reasons why we should apply nanomaterial in tissue repair

The use of nanomaterials in the design of tissue scaffolds in the
CNS is primarily due to their abilities to favour neuronal adhesion,
to re-create an ECM-like microenvironment and to interact with neuronal
membranes at the nanoscale [2]. In fact, a fundamental step, in any strat-
egies aimed at improving CNS regenerative ability, is the manufacturing
of scaffolds which are able to control (and to selectively tune) cellular ad-
hesion [19], to govern axonal regrowth and neuronal physiology [20-22].

Growth substrates with a nanostructure similar to the finest neuro-
nal processes of axons and dendrites allow an unprecedented control in
the interactions between neuronal membranes and the nanomaterial in
itself. Although, in principle, both micro and nanometer scale topogra-
phies are able to impact on cellular morphology and proliferation, likely
via the bio-mimicry of environmental cues [2], the interaction of neu-
rons with their growing substrate is governed by mechanisms which
mainly occur at the nanoscale level. In growing neurons, sensing the ex-
tracellular environment is accomplished by various adhesion structures
(e.g. neural cell adhesion molecule — NCAM, N-cadherin and integrins
[20-22]), which are extremely sensitive to (and modulated by) the sub-
strate features, such as nanotopography or physico-chemical proper-
ties. In particular, membrane contacts with the growing environment
largely rely on the presence of adhesion sites (focal adhesions) in the
5-200 nm range that, accordingly, are sharply affected by substrate
nanotopographical features [23,24]. Furthermore, neuronal adhesion
is favoured when the roughness of the growth substrate matches the
size of neuronal processes, and neurons show a marked preference for
nanorough surfaces (like e.g. carbon nanotube films [25]), able to guide
neurite extension (see below). The enrichment of current materials, tra-
ditionally used to improve regeneration in lesioned tissues (namely
collagen, polysaccharides, self-assembling peptides, ECM-like materials
[18]) with synthetic nanomaterials holds the concrete potential of im-
proving neuroregenerative processes. This could be achieved also via
the controlled presentation of tissue specific instructions in nanostruc-
tured platforms, able to support neuronal differentiation and to direct
(re)growth [14,24,26-28].

Polymeric materials employed in the design of neuroregeneration-
promoting platforms, although able to provide a biomimetic environ-
ment, are deprived of any electrical conductivity. Recently, it has been
suggested that non-conductive biomaterials currently used in scaffold de-
sign may limit the engineering of electrically propagating tissue [2]. This
observation hints at the use of tailored composite scaffolds obtained by
blending conductive nanomaterials with traditional bio-materials. Carbon
nanotubes possess high electrical conductivity and several nanotube-
based CNS applications are being developed, such as neural prosthesis
for monitoring neural activity. Recently, carbon nanotubes have attracted
tremendous attention for the development of nano-bio hybrid systems
able to govern cell specific behaviours in cultured neuronal networks
[29-35].

3. Carbon nanotubes as nerve tissue reconstructing platforms

Carbon nanotubes are cylindrical nanostructures made up of graphene
sheets wrapped onto themselves [36]. In neuroscience applications, the
mostly used geometries are single-walled carbon nanotubes (SWCNT),
made up of a single graphene sheet rolled-up and closed at its ends
by hemispheric fullerene caps, and multi-walled carbon nanotubes
(MWCNT), made up of several concentric graphene cylinders. Cur-
rently, carbon nanotube-based applications in neuroscience include:
electrical interfaces for neuronal stimulation and recording (that
drastically improve the electrode performance, both in vitro and in
vivo [5,29,30,37,38]) as well as platforms to promote neuronal survival,
differentiation, growth and performance [31-35,39-49]. Starting more
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