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This paper is a survey of existing estimation methods for pharmacokinetic/pharmacodynamic (PK/PD)
models based on stochastic differential equations (SDEs). Most parametric estimation methods proposed
for SDEs require high frequency data and are often poorly suited for PK/PD data which are usually sparse.
Moreover, PK/PD experiments generally include not a single individual but a group of subjects, leading to a
population estimation approach. This review concentrates on estimation methods which have been applied
to PK/PD data, for SDEs observed with and without measurement noise, with a standard or a population
approach. Besides, the adopted methodologies highly differ depending on the existence or not of an explicit
transition density of the SDE solution.
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1. Introduction

Pharmacokinetics (PK) aims at describing the relationship between
the dose administered and the exposure to the drug, i.e. the total con-
centration of drug in the body. Pharmacodynamics (PD) quantifies the
relationship between the drug exposure and the response to this expo-
sure. PK/PD models are often described by differential systems derived
from physiology. In general, the proposed models are deterministic,
that is, the observed kinetic/dynamic is driven exclusively by internal
deterministic mechanisms. However, real pharmacological processes
are always exposed to influences that are not completely understood
or not feasible to model explicitly. Ignoring these phenomena in the
modeling may affect the estimation of PK/PD parameters and the
derived conclusions. Therefore there is an increasing need to extend
the deterministic models to models including a stochastic component.
A natural extension of deterministic differential equations model is a
system of stochastic differential equations (SDEs), where relevant pa-
rameters have beenmodeled as suitable stochastic processes, or stochas-
tic processes have been added to the driving system equations [12].

The first papers encouraging the introduction of random fluctua-
tions in PK/PD were published by [7,41,42]. The authors underline
that PK/PD have contributions from both deterministic and stochas-
tic components: drug concentrations follow determinable trends
but the exact concentration at any given time is not completely de-
termined. For example [42] proposes a stochastic one-compartment
PK model with a variable elimination rate. More sophisticated PK/PD
models have then been proposed with multiple compartments,
nonlinear or time-inhomogeneous absorption or elimination (see
for example [21,46,11,13,37]).

Parameter estimation for SDE has been highly tackled in the sta-
tistical literature, often motivated by financial applications (see [44],
for a review). However, many suggested solutions require high
frequency data and are not suited for PK/PD data where designs are
usually sparse. Especially, estimation methods based on approxima-
tions of the continuous-time observation likelihood (namely the
Girsanov formula), which require a high number of data and a small
time step between two successive observations, are not adapted.
Moreover, PK/PD data are more and more analyzed through a popula-
tion approach when data from several subjects are considered simul-
taneously. This yields to PK/PD models with random parameters.
Combining SDE with a population approach is quite appealing but
raises inference challenges.

In this paper, we concentrate our review on estimation methods
adapted to the particular characteristics of PK/PD data. After a short
presentation of some examples of PK/PD SDEs in Section 2, we
introduce some preliminary comments on the likelihood functions
depending on the considered observation model (with and without
measurement noise) in Section 3. Section 4 is about estimation
methods for standard PK/PD SDE: when SDEs are directly observed,
the reader is introduced to techniques based on (i) exact maximum
likelihood estimator when explicit solution is available or (ii) Hermite
expansion of the transition density, (iii) approximation of the spectral
density if the SDE has no explicit solution. When the SDE is observed
with an additivemeasurement error,methods are based on (iv) Kalman
filter and its extended version or (v) Monte Carlo approximation of the
likelihood. Section 5 discusses estimation methods within population
approach: we detail methods based on (i) exact maximum likelihood

estimator when linear SDE with random effect and no measurement
noise are considered, (ii) Gauss-Hermite quadrature to approximate
the likelihood, possibly coupled with (iii) Hermite expansion of the
transition density, (iv) Bayesian approach, (v) Kalman filter and linear-
ization of the likelihood, and (vi) Expectation-Maximization algorithm.
The paper finishes with some discussion (Section 6).

2. Stochastic PK/PD models

In this section, we present some stochastic compartmental PK/PD
models that have been proposed in the literature. This list is far from
being exhaustive but aims at presenting typical situations, each of
them involving a different level of statistical inference difficulty. We
refer to [12] for a construction of the Brownian motion and stochastic
integrals and for usual stochastic processes (geometric Brownian mo-
tion, Ornstein-Uhlenbeck process, etc.) that are presented in this section.

2.1. From deterministic to stochastic model in PK

Let us first consider a very simple PK model proposed by [41],
namely a one compartment PK model with first-order elimination ke
and an injected intravenous bolus dose D of drug. The kinetic of
the drug concentration Ct in the body at time t > 0 is described by
the following deterministic differential equation:

dCt

dt
¼ −keCt ; C0 ¼ D

V
;

where V is the volume of the compartment. This equation has an ex-
plicit solution: Ct ¼ D

V
e−ket . Now, assume that ke is not constant in

time but randomly fluctuates around a mean value as ke + ξt,
where ξt is a Gaussian white noise process. Then ξtdt can be written
as γdBt, where Bt is a Brownian motion and γ is a constant parameter.
Incorporating this noise into the deterministic model, Ct becomes a
stochastic process, solution of the following SDE:

dCt ¼ −keCtdt þ γCtdBt ; C0 ¼ D
V
: ð1Þ

This process – known as geometric Brownian motion – has an
explicit expression

Ct ¼
D
V
e−ketexp −γ2

2
t þ γBt

 !
:

This stochastic process, which is log-normal, only takes positive
values, which is noticeable whenmodeling concentration. Parameters
to be estimated are θ = (ke,V,γ).

A stochastic one compartment PK model with first-order absorp-
tion has also been considered by [21]:

dCt ¼ ka=V−keCtð Þdt þ γdBt ; C0 ¼ D
V
; ð2Þ

where ka is the absorption rate. This process – known as an Ornstein-
Uhlenbeck process – has an explicit expression

Ct ¼
D
V
e−ket þ ka

Vke
1−e−ket
� �

þ γ∫t
0
e−ke t−sð ÞdBs;
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