ELSEVIER

Contents lists available at SciVerse ScienceDirect

Animal Reproduction Science

journal homepage: www.elsevier.com/locate/anireprosci

Amounts of an estrogen receptor β isoform increased in the theca of preovulatory follicles of sheep

Horacio Cárdenas¹, William F. Pope*

Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, United States

ARTICLE INFO

Article history: Received 1 September 2011 Received in revised form 7 February 2012 Accepted 2 March 2012 Available online 10 March 2012

Keywords: Estrogen receptor Ovarian follicle Oviduct Uterus Sheep

ABSTRACT

Determination of the specific roles of the estrogen receptor (ER) forms in reproductive processes of different species remains incomplete. In the present experiment, cellular localization and changes in relative amounts of the ER α and ER β in late developing ovarian follicles, oviduct, and uterus were determined during the follicular phase of the estrous cycle in sheep. Ewes in mid-luteal phase were treated with prostaglandin $F_{2\alpha}$ (PG) to induce luteolysis and control the onset of the follicular phase. The oviducts, uterus, and the ovaries were collected at 0 (ewes not treated with PG), 4, 18, and 36 h after PG treatment (early, mid, and late follicular phase, respectively) and processed to evaluate the ERs using immunohistochemical (IHC) procedures. The ERα was localized to nuclei of granulosa cells of late developing follicles and most cells of the oviduct and uterus. The ERB was detected only in ovarian follicles using two antibodies directed to different regions of the ERβ. Western immunoblotting demonstrated that the antibody directed against the N-terminal region of the ERB detected one isoform (approximately 53 kDa) whereas the antibody directed against the C-terminus detected two ERβ isoforms (approximately 53 kDa and 59 kDa). Western and IHC results combined indicated presence of the 59 kDa ER β in granulosa cells and the 53 kDa ERβ in both granulosa and theca cells. Relative amounts (immunostaining intensity) of the ER α increased (P < .05) in granulosa cells of preovulatory follicles and in the isthmian muscularis of the oviduct at the late follicular phase. Amounts of the ER α in the mucosal epithelium of the oviductal regions (isthmus, ampulla, and infundibulum), and in various uterine cell types (glandular and luminal epithelia, endometrial stromal cells, and myometrium) did not change (P > .05) throughout the follicular phase. A major increase (four-fold) in expression of the 53 kDa ERβ in the theca and a less pronounced increase in the granulosa occurred at the late follicular phase. The ER α is broadly expressed in reproductive organs of sheep and is upregulated only in few cell types during the late follicular phase. Immunoreactive ER β was detected only in the ovary. Important estrogen actions in theca cells during preovulatory follicular development likely occur in association with a major increase in expression of an ERβ isoform.

© 2012 Elsevier B.V. All rights reserved.

E-mail address: pope.2@osu.edu (W.F. Pope).

1. Introduction

Estradiol-17 β (estradiol) regulates follicular development, gonadotropin secretion, estrous behavior, and functions of all reproductive organs (Palter et al., 2001). Estradiol actions are mediated by at least two estrogen receptors (ERs); the ER α and ER β , which based on their main mode of signaling are classified as ligand-activated

^{*} Corresponding author at: Department of Animal Sciences, The Ohio State University, 2027 Coffey Road, Columbus, OH 43210, United States. Tel.: +1 614 292 3943; fax: +1 614 292 7116.

Present address: Department of Medicine, Indiana University, Walther Hall R3-C312, 980 W. Walnut Street, Indianapolis, IN 46202, United States

transcription factors (Heldring et al., 2007). In addition to the two ER forms, a number of ER mRNA variants, most of them resulting from alternative splicing of the original transcripts, have been reported (Poola et al., 2002; Girault et al., 2004). Expression, regulation, and functions of the proteins encoded by the majority of ER mRNA variants remain to be elucidated (Deroo and Korach, 2006).

Determining the localization and changes in expression of the ERs is important for identifying cells responsive to estrogens and elucidating the roles of the ERs. The ER β has been the predominant or only ER detected in granulosa cells of mice and rats (Fitzpatrick et al., 1999; Sar and Welsh, 1999), however, both the ER α and ER β have been detected in granulosa cells of other species such as sheep and pigs (Tomanek et al., 1997; Cárdenas et al., 2001; Slomczynska et al., 2001). Expression of the ERs in the theca also differs among species; for example, the ERB is expressed in sheep and pigs (Tomanek et al., 1997; Slomczynska et al., 2001) and the ER α in rodents and cattle (Fitzpatrick et al., 1999; Rosenfeld et al., 1999). In the uterus the ER α has been readily detected in various cell types, whereas the ERB has been undetectable or significantly less abundant (Taylor and Al-Azzawi, 2000; Wang et al., 2000; Cárdenas and Pope, 2004). Similarly, in the oviduct the ER α has been observed in more cell types and in greater amounts than the ERB (Wang et al., 2000; Okada et al., 2003; Ulbrich et al., 2003). The specific roles of the ERs in the reproductive processes, particularly in ovarian follicles where the ERs are co-expressed, are not well defined (Drummond and Fuller,

Although cellular localization of the ERs in reproductive organs has been described in some detail, information on changes in ER expression during the estrous cycle of the majority of species is limited. We hypothesize that changes in ER expression occur in reproductive organs which probably contribute to regulation of estrogen actions. Estradiol is important during the follicular phase of the estrous cycle when its secretion increases influencing a number of reproductive processes. In sheep, relative amounts of the ER α have been determined in the uterus during the follicular phase (Cherny et al., 1991; Spencer and Bazer, 1995), but little is known about the fluctuations in amounts of the ERs in late developing follicles and the oviduct. Late developing follicles undergo rapid growth, ovulation and luteinization, processes that might be partially regulated by estrogens. In addition, late developing follicles are a major source of estradiol and are constantly exposed to high concentrations of this hormone. Estradiol actions under these conditions might be regulated by changes in elements of the estrogen signaling pathways including expression of the ERs. The oviduct has three regions (isthmus, ampulla, and infundibulum) with different roles in the processes of ova pickup, transport of gametes, fertilization and transport of embryos (Jansen, 1984; Abe, 1996). It is not clear if differences exist in expression of the ERs among the oviductal regions that would relate to differences in functions.

The objectives of the present experiment were to determine the localization and relative changes in amounts of immunoreactive ERs in late developing follicles, oviduct,

and uterus during the follicular phase of the estrous cycle in sheep.

2. Materials and methods

Crossbred ewes (Hampshire by Targhee) received two injections (i.m.), nine days apart, of $20\,\mathrm{mg}$ of $\mathrm{PGF}_{2\alpha}$ (PG, Lutalyse, Pfizer, New York, NY) to control regression of corpora lutea (CL) and onset of the follicular phase of the estrous cycle. Before the second PG injection, ewes were randomly assigned to be evaluated at 0 (no PG treatment), 4, 18 or 36 h post-PG administration (n=4 per group). In a previous experiment conducted in our laboratory using ewes of the same genetic background, plasma progesterone decreased to less than 1 ng/ml within 4h, and onset of estrus occurred in average 34h after PG treatment (Wiley et al., 1997). Based on these results, it was estimated that the period of evaluation from 0 to 36 h after PG treatment in the present experiment comprised the entire follicular phase.

Ewes were euthanized at the different evaluation times to obtain the reproductive organs. Proper response to PG treatment for induction of the follicular phase was verified by observation of signs of regression of corpora lutea (changes in size and color) and size of ovarian follicles. The ovaries, a cross section (approximately 1 cm²) of the uterine wall (non-caruncular area from the miduterine horn), and portions of approximately 2 cm in length of oviductal isthmus (proximal to the uterine-tubal junction), ampulla (mid-region wider than the isthmus) and infundibulum (funnel-shaped end) were collected from each ewe. Tissues were fixed in 4% paraformaldehyde for 18 h at 4 °C, dehydrated in a series of ethanol solutions and then embedded in paraffin following standard procedures. Experimental protocols involving animals were approved by the Animal Care and Use Committee of the College of Food Agriculture and Environmental Sciences.

2.1. Immunohistochemistry

The ERs were detected in the different tissues of each ewe (n=4 per time-point) by immunohistochemistry (IHC) using a Vectastain ABC kit for peroxidase (Vector Laboratories Inc., Burlingame, CA). The ER antibodies and corresponding immunizing peptides were purchased from Affinity BioReagents (Golden, CO). The ER α PA1-309 polyclonal antibody was raised against a peptide corresponding to amino acids 21–32 of the human ER α . This peptide sequence is completely conserved in several species including sheep. Two polyclonal antibodies: PA1-311 and PA1-313 were used for detection of the ER β . The PA1-311 was raised against residues 55–70 of the rat ER β (15 out of 16 homologies with sheep), and the PA-313 against a 19 amino acid sequence of the human ER β C-terminus (13 out of 19 homologies with sheep).

The IHC procedure has been previously described (Cárdenas and Pope, 2004) and was applied with few modifications. Briefly, deparaffinized tissue sections (7 μ m) were incubated in 0.01 M sodium citrate, pH 6.0, for 30 min at 95 °C (antigen retrieval), allowed to cool to 38 °C, rinsed in PBS (pH 7.3) at room temperature, treated with 0.3%

Download English Version:

https://daneshyari.com/en/article/2073194

Download Persian Version:

https://daneshyari.com/article/2073194

<u>Daneshyari.com</u>