

Animal Reproduction Science 103 (2008) 201-214

ANIMAL REPRODUCTION SCIENCE

www.elsevier.com/locate/anireprosci

Assessment of *in vitro* sperm characteristics in relation to fertility in dairy bulls

Lindsay Gillan^{a,*}, Tom Kroetsch^b, W.M. Chis Maxwell^a, Gareth Evans^a

 ^a Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
^b The Semex Alliance, Guelph, Ontario, Canada NIG 3Z2

Received 17 April 2006; received in revised form 30 November 2006; accepted 5 December 2006 Available online 13 December 2006

Abstract

The performance of frozen-thawed spermatozoa from 10 Holstein bulls in a range of *in vitro* diagnostic tests and the relationship with adjusted *in vivo* fertility data was determined. The tests included an assessment of motility (subjective and computer-assisted), morphology, concentration, viability, acrosomal and chromatin integrity conducted immediately post-thaw and after swim-up, in conjunction with membrane status (CTC staining) and migration in an artificial cervical mucus. Adjusted *in vivo* fertility correlated with subjectively assessed post-thaw motility (r = 0.672, p = 0.033), post-thaw straight-line velocity (r = 0.636, p = 0.048), post-thaw sperm morphology (r = -0.762, p = 0.010), post-thaw sperm viability (r = 0.635, p = 0.048), the concentration of spermatozoa after swim-up (r = 0.649, p = 0.042), sperm morphology after swim-up (r = -0.687, p = 0.028), the number of spermatozoa migrating 10 mm into artificial cervical mucus (r = 0.632, p = 0.050) and the distance migrated by the vanguard spermatozoon in artificial mucus (r = 0.701, p = 0.024). A stepwise regression analysis identified tests which, when combined, produced models with a strong correlation ($R^2 > 0.9$) to fertility.

Keywords: Sperm quality; Fertility; Bulls; Non-return rate; Cattle

E-mail address: lindsay.gillan@sydneyivf.com (L. Gillan).

0378-4320/\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.anireprosci.2006.12.010

^{*} Corresponding author at: Sydney IVF, Level 4, 321 Kent Street Sydney, NSW 2000, Australia. Tel.: +61 2 8484 6506; fax: +61 2 9229 6476.

1. Introduction

The fertility of a young bull is generally evaluated after its frozen-thawed semen is used in a large-scale artificial insemination (AI) program. This method is expensive, time-consuming and only allows a limited number of bulls to be tested at any given time. Consequently, it would be of great benefit to the cattle industry to develop a simple, accurate and reliable *in vitro* method of assessing the potential fertility of bulls based on an analysis of their semen.

Traditional *in vitro* evaluation of semen quality involves the subjective assessment of motility, an estimate of the proportion of spermatozoa with normal morphology and an estimate of the concentration of spermatozoa in a unit dose. While these tests set minimum standards for semen used for AI, they have limited value for predicting the subsequent fertility of the sample (Rodriguez-Martinez, 2000). As a result, attention has been directed towards the assessment of other aspects of semen quality as predictors of fertility, such as viability (Januskauskas et al., 2000; Alm et al., 2001), acrosomal integrity (Correa et al., 1997), membrane status (Thundathil et al., 1999; Januskauskas et al., 2000), DNA integrity (Ballachey et al., 1987; Januskauskas et al., 2001), membrane proteins (Parent et al., 1999) and the ability of spermatozoa to swim-up (Zhang et al., 1998; Januskauskas et al., 2000). While some success has been achieved, few single *in vitro* sperm parameters show a reliable and repeatable correlation with field fertility (Rodriguez-Martinez, 2000). In an attempt to address this issue the performance of spermatozoa in *in vitro* tests which assess multiple sperm traits have been used, such as *in vitro* fertilisation, or the performance of spermatozoa in a number of *in vitro* tests have been combined to produce a model.

In the present study, a range of *in vitro* diagnostic tests were performed on a group of bulls (n=10) with well established fertility. A wide range of *in vitro* diagnostic tests were chosen including traditional semen assessments; subjective assessment of motility, morphology assessment and concentration in a unit dose, in conjunction with computer-assisted semen analysis, acrosomal integrity, chromatin integrity, membrane status, the ability of sperm to perform in a swim-up assay and penetration of artificial cervical mucus. These *in vitro* diagnostic tests were chosen in an attempt to identify tests with a high correlation with fertility that would fit into the routine evaluation of a bull in an AI centre. Bulls chosen for inclusion in the study had semen parameters within ranges considered acceptable for use for AI. Despite this they displayed a wide range of fertility, suggesting that currently used parameters do not accurately predict fertility. The data were statistically analysed to determine if a correlation existed between individual and combinations of *in vitro* tests and adjusted *in vivo* fertility.

2. Materials and methods

2.1. Reagents and media

Unless otherwise stated, all media components were purchased from Sigma–Aldrich (St. Louis, MO, USA). The culture medium used for swim-up was modified Tyrode's (Sp-TALP) containing 100 mM NaCl, 3.1 mM KCl, 0.4 mM MgCl₂, 2 mM CaCl₂, 0.3 mM KH₂PO₄, 25 mM Na HCO₃, 10 mM Na-HEPES, 1 mM pyruvic acid (sodium salt), 21.6 mM Na-lactate, 6 mg/ml BSA (Fraction V) described by Parrish et al. (1988). The culture medium used for the sperm migration assay was cryodiluent, lacking glycerol and egg-yolk (TCF; 200 mM Tris, 67 mM citric acid, 56 mM fructose and 1% (v/v) BSA) and was chosen in an attempt to minimise the effect of medium and dilution on the performance of spermatozoa in the migration assay. The pH of the media used for

Download English Version:

https://daneshyari.com/en/article/2074423

Download Persian Version:

https://daneshyari.com/article/2074423

Daneshyari.com