
BioSystems 141 (2016) 40–44

Contents lists available at ScienceDirect

BioSystems

jo u r n al homep age: www.elsev ier .com/ locate /b iosystems

A  framework  for  modeling  information  propagation  of
biological  systems  at  critical  states

Feng  Hu ∗,  Fang  Yang
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 23 November 2013
Received in revised form 16 January 2016
Accepted 9 February 2016
Available online 10 February 2016

Keywords:
Self-organized criticality
Information propagation
Phase diagram
Mobility and criticality

a  b  s  t  r  a  c  t

We  explore  the dynamics  of  information  propagation  at the  critical  state  of  a biologically  inspired  system
by an  individual-based  computer  model.  “Quorum  response”,  a type  of  social  interaction  which  has  been
recognized  taxonomically  in  animal  groups,  is applied  as the  sole  interaction  rule  among  individuals.
In  the  model,  we  assume  a truncated  Gaussian  distribution  to depict  the  distribution  of  the  individuals’
vigilance  level.  Each individual  can  assume  either  a  naïve  state  or an  alarmed  one  and  only  switches
from  the  former  state  to the latter  one.  If an  individual  has  turned  into  an alarmed  state,  it stays  in
the  state  during  the  process  of  information  propagation.  Initially,  each  individual  is set to be  at  the
naïve  state  and  information  is tapped  into  the system  by perturbing  an individual  at  the  boundaries
(alerting  it to  the  alarmed  state).  The  system  evolves  as individuals  turn  into  the  alarmed  state,  according
to  the  quorum  response  rules,  consecutively.  We  find  that  by  fine-tuning  the  parameters  of the  mean  and
the standard  deviation  of  the  Gaussian  distribution,  the  system  is  poised  at a critical  state.  We  present
the  phase  diagrams  to  exhibit  that  the  parameter  space  is  divided  into  a super-critical  and  a sub-critical
zone,  in  which  the  dynamics  of  information  propagation  varies  largely.  We  then  investigate  the  effects  of
the  individuals’  mobility  on  the  critical  state,  and allow  a proportion  of randomly  chosen  individuals  to
exchange  their  positions  at each  time  step.  We  find  that mobility  breaks  down  criticality  of  the  system.

©  2016 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

For a system in a critical state, long range correlations occur.
That implies that perturbations caused by individual constituents
can have systemic effects. The properties of criticality may  benefit
biological systems to process environmental perturbations effi-
ciently (Mora and Bialek, 2011). Self-organized criticality (SOC),
which was proposed by Bak et al. (1987), is now a commonly
accepted underlying mechanism to phenomena such as earth-
quakes and brain dynamics (Bak, 1996; Sharma et al., 2016; CDR,
2010). It states that a complex system can organize itself to a crit-
ical state without tuning parameters from the outside. The “finger
print” of a system entering a critical state is a power law dis-
tribution of the size of the “avalanches” which is measured by
counting the number of the affected individual components in
the dynamic process. This distribution indicates that, at a critical
point, there is no characteristic scale in the system. The correlation
length in the system can vary from a local level to a system-
wide one. Recently, Cavagna et al. (2010) observed that in the

∗ Corresponding author.
E-mail address: collinhucn@126.com (F. Hu).

airborne motion of large starling flocks, the correlation length
between two  individuals does not depend on the size of the flock,
the so called scale-free correlation. This observation reveals that
the starling flocks work at a critical state, in which one individ-
ual can effectively affect the state of any others’ no matter what
the group size is, and vice versa. This property confers the group
an ability to share information efficiently so that the flock can
optimally respond to external perturbations. Viktorovich (1973)
noted that schools of fish can also transfer information rapidly
in reaction to perceived risk at the front of the school. He found
that the fishes at the front made a quick rotation from the risk
and their local neighbors behind imitated this behavior. The con-
secutive rotations of the fishes resulted in a rapidly traveling
disturbances, which rippled from the front to the rear at a speed
much faster than individual fish’s speed. However, besides these
experimental studies, the underlying micro-mechanism of infor-
mation propagation is left largely ignored (Herbert-Read et al.,
2015; Couzin et al., 2005; Bialek et al., 2012). Other systems at dif-
ferent biological levels show collective behavior including cancer
cells (Deisboeck and Couzin, 2009), bacterial colonies (Zhang et al.,
2010), and human brains (CDR, 2010). The working efficiency of
which may  depend on the underlying mechanism of information
propagation.
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In this paper, we studied the dynamics of information propaga-
tion at critical points in an individual-based computer model with
the interaction among particles being quorum response. Each indi-
vidual was assigned a “vigilance number” to quantitatively depict
its vigilance level to respond to its local neighbors’ commitment.
We assumed the distribution of the “vigilance number” to be a
truncated Gaussian distribution in the interval of (0, 1). By tapp-
ing information from boundaries into the system, we found that,
by fine tuning parameters of the Gaussian distribution, the system
could be poised at a critical state in the dynamics of information
transfer. We  presented phase diagrams to show that the parame-
ter space is divided into a sub-critical and a super-critical zone, in
which the dynamics of information propagation is quite different.
We then investigated the effects of individual’s mobility on the sys-
tem’s critical state, and found that mobility breaks down the critical
state of the system.

2. Quorum response

Quorum response is a type of social interaction widely found
during the process of collective decision-making in bee and ant
colonies (Seeley and Visscher, 2004; Franks et al., 2015), cockroach
aggregations (Amé et al., 2006), broiler chicken crowds (Collins and
Sumpter, 2007) and fish schools (Ward et al., 2008). It quantitatively
states that an individual’s chance of making one option depends on
the number of its local neighbors that committed to this option.

Lets consider the following simple example, suppose there are
only two options (e.g., being at an alarmed state (“+” state) or a
naïve one (“−” state)). The mathematical description of the rule of
“quorum response” is as follows (Sumpter and Pratt, 2009):

pi
+(t) = ((ni+(t))/qi)

k

1 + ((ni+(t))/qi)
k

, pi
−(t) = 1 − pi

+(t), (1)

where pi±(t) is the probability for individual i choosing to be at
an alarmed or a naïve state at time step t, respectively (individ-
ual i will turn into “+” or “−” state at time step t + 1 according
to the probabilities) and ni±(t) is the number of local neighbors
who have committed to the alarmed or the naïve state at time t,
respectively. The parameter qi (0 < qi < n0(= ni+(t) + ni−(t))) is the
quorum value for individual i to turn into an alarmed state and n0
is the number of its local neighbors. Quorum value is related to the
individual’s vigilance level. If qi is big, compared to the number of
individual i′s local neighbors, it means individual i is difficult to be
alerted by its alarmed local neighbors to turn into an alarmed state.
Otherwise, If qi is small, individual i is easily startled by its a few
alarmed local neighbors to turn into an alarmed state. This function
resembles the well-known Hill function (Sumpter and Pratt, 2009).
If k is bigger, the variation of the curve becomes steeper than the lin-
ear increase at the quorum point, see Fig. 1. Thus it can be expected
that k ≥ 2 is a necessity in the framework of the interaction rule
(Sumpter and Pratt, 2009). In field experiments, it is found that
animals adapt k to be ∼3 as a result of evolution (Amé  et al., 2006;
Ward et al., 2008). Quorum response is essentially a distributed pos-
itive feedback process that enables information propagation and it
is believed that this type of interaction can enhance decision speed
and accuracy for a group to make a collective decision (Sumpter
and Pratt, 2009).

3. An individual-based model

Quorum response can be modeled in computers for quantita-
tive investigation and to determine the parameters associated with
different types of information flow. In this paper we investigated
information propagation in 2D. A system is composed of a square
of the dimension of 100 × 100 evenly spaced grid. Each individual

Fig. 1. Function of quorum response according to Eq. (1). The y-axis is the probability
for individual i at time t to choose to be at an alarmed and the x-axis is the number
of its local neighbors who have committed to this option at time t. The total number
of  local neighbors n0 of particle i is set to be 10 and the threshold value is n0/2 in
this figure. The quorum response increase more slowly under the threshold value
and more rapidly above it than a linear fit. The steepness is increasing when k is
increasing, and becomes a step function in the limit k→ ∞.

is positioned in a grid, and we  assign each individual a “vigilance
number” ˛i(i = 1, 2, . . .)  which measures how vigilant the individual
i is responding to its local neighbor’s state. The distribution of ˛i is
assumed to obey a truncated Gaussian distribution in the interval
(0, 1), with the mean being � and the standard deviation being ı.
In this section, each individual is immobile on the grid. The effects
of the individual’s mobility will be considered in Section 5.

The sole interaction rule among the individuals in the model is
the quorum response according to Eq. (1), with qi being defined as,

qi ≡ n0 ∗ ˛i,

where n0 = 4 is the local neighbors to any individual not positioned
at boundaries (if a individual lies at one of the four corners, n0 = 2,
or else if it lies at one of the four boundary lines, n0 = 3). Each indi-
vidual can either be in an alarmed state (“+” state) or in a naïve
state (“−” state) at the probability calculated according to Eq. (1).
The probability is realized by Monte Carlo method at each time step
in the dynamic process of the system, i.e. a random number which
is evenly distributed in the interval of (0, 1) is sampled at the time
step t and being compared to the probability pi+(t) in Eq. (1). If the
sampled random number is smaller, then the individual i will turn
into the alarmed state at the next time step. Otherwise, it will stay
in the naïve state.

Following the general assumption that individuals at periph-
eries find the approaching risks in advance (Inglis and Lazarus,
1981), we  tap information in the system by randomly picking a
individual lying at one of the boundary lines and turn its state to
the alarmed one. The local interactions may  affect the state of its
local neighbors, and the affected neighbors continue to repeat the
interaction which may  cascade into an “information wave” even-
tually. If an individual turns into the alarmed state at time step t,
then it will stay at the alarmed state unchanged during the dynam-
ics of information propagation. One run of information propagation
is considered completed when all the alarmed individuals are not
capable to alter the state of its local neighbors anymore.

We find that if the parameters of � and ı are fine tuned, a
power law distribution of the size of the information waves is
emerged. The total population of the individuals in the system
is 100 × 100 and the standard deviation of the Gaussian distribu-
tion is set to ı = 0.15 in Fig. 2. Each data point is averaged over
5 × 105 runs of simulation. The fine tuned parameters of � and k
are: k = 3, � = 0.307 ; k = 8, � = 0.310; and k → ∞ , � = 0.316 (when
k approaches infinity, quorum response function is practically a
step function). The size of the information waves is quantified by
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