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a  b  s  t  r  a  c  t

Progress  in  cell type  reprogramming  has  revived  the  interest  in  Waddington’s  concept  of  the  epigenetic
landscape.  Recently  researchers  developed  the  quasi-potential  theory  to represent  the Waddington’s
landscape.  The  Quasi-potential  U(x), derived  from  interactions  in the  gene  regulatory  network  (GRN)  of  a
cell,  quantifies  the relative  stability  of  network  states,  which  determine  the  effort  required  for  state  tran-
sitions  in  a multi-stable  dynamical  system.  However,  quasi-potential  landscapes,  originally  developed
for  continuous  systems,  are not  suitable  for discrete-valued  networks  which  are  important  tools  to  study
complex systems.  In this  paper,  we  provide  a framework  to  quantify  the  landscape  for  discrete  Boolean
networks  (BNs).  We  apply  our  framework  to  study  pancreas  cell  differentiation  where  an  ensemble  of
BN models  is considered  based on the  structure  of a  minimal  GRN  for  pancreas  development.  We  impose
biologically  motivated  structural  constraints  (corresponding  to  specific  type  of  Boolean  functions)  and
dynamical  constraints  (corresponding  to stable  attractor  states)  to limit  the space  of  BN  models  for  pan-
creas  development.  In addition,  we  enforce  a novel  functional  constraint  corresponding  to  the relative
ordering  of attractor  states  in BN models  to restrict  the  space  of  BN models  to the  biological  relevant  class.
We find  that  BNs  with  canalyzing/sign-compatible  Boolean  functions  best  capture  the  dynamics  of  pan-
creas cell  differentiation.  This  framework  can  also  determine  the genes’  influence  on  cell  state  transitions,
and  thus  can  facilitate  the  rational  design  of  cell  reprogramming  protocols.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

A hallmark of multicellular organisms is the co-existence of dis-
tinct differentiated cell types with different functions and stable
gene expression patterns. A less specialized cell, a stem or progeni-
tor cell, spawns a variety of more specialized progeny cells through
cell differentiation. Once differentiated, a specialized cell’s gene
expression pattern is relatively robust against perturbations ema-
nating from a noisy environment. Where does this stability come
from? How do gene expression patterns change as cells differenti-

Abbreviations: BN, Boolean network; CF, canalyzing function; GRN, gene reg-
ulatory network; MFPT, mean first passage time; NCF, nested canalyzing function;
ODE, ordinary differential equation; SGN, sign-compatible function.
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ate in response to external cues, and thereby, transition from one
stable gene expression pattern to another? In principle, such ques-
tions can be answered by understanding the interactions between
the genes in the underlying gene regulatory network (GRN), which
constrain the changes in the gene expression patterns, producing
stable and unstable steady states. The dynamical system associ-
ated with GRNs can be modeled by a system of ordinary differential
equations (ODEs) where continuous variables represent the expres-
sion levels of individual genes. However, with ODEs one is quickly
limited by the number of configurations of the networks due to the
exponential growth of complexity with the number of genes as well
as the general lack of information on the parameters that charac-
terize the interactions between genes. A widely used alternative
approach to study GRNs is Boolean networks (BNs), a framework
that enables modelling of networks with hundreds of genes or ana-
lyze large statistical ensembles of networks of random structure
(Kauffman, 1969, 1993). Analysis of an ensemble of BNs can yield
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insights on the relationship between structure and dynamics of
GRNs (Kauffman, 1969, 1993; Shmulevich and Kauffman, 2004).

In 1969 Kauffman introduced BNs to study the dynamics of GRNs
(Kauffman, 1969). Since then BNs have been used to model a wide
range of biological phenomena such as cell cycle, cellular differ-
entiation and evolution of GRNs (Huang and Ingber, 2000; Klemm
and Bornholdt, 2005; Balleza et al., 2008; Torres-Sosa et al., 2012;
Espinosa-Soto et al., 2011; Lau et al., 2007; Samal and Jain, 2008; Li
et al., 2004; Albert, 2003; Villani et al., 2011; Krumsiek et al., 2011;
Chang et al., 2011; Flöttmann et al., 2012; Villarreal et al., 2012).
Specifically, BNs have been extensively used to study developmen-
tal processes. Villani et al. (2011) have developed a BN framework
for cell differentiation. Krumsiek et al. (2011) have developed a BN
model to recapitulate hematopoiesis. Chang et al. (2011) employed
a BN model to explain human embryonic stem cell differentiation
and the generation of induced pluripotent stem cells (iPSCs). Klipp
et al. (Flöttmann et al., 2012) used a BN model to study the influence
of gene regulation, methylation and histone modifications on cell
differentiation. Alvarez-Buylla et al. (Balleza et al., 2008; Villarreal
et al., 2012) used BNs to explain cell differentiation and develop-
mental ordering in the floral organ of Arabidopsis. An important
limitation of these reconstructed BN models (Huang and Ingber,
2000; Klemm and Bornholdt, 2005; Balleza et al., 2008; Torres-Sosa
et al., 2012; Espinosa-Soto et al., 2011; Lau et al., 2007; Samal and
Jain, 2008; Li et al., 2004; Albert, 2003; Villani et al., 2011; Krumsiek
et al., 2011; Chang et al., 2011; Flöttmann et al., 2012; Villarreal
et al., 2012) for different biological processes is their specification
of one defined set of Boolean functions for genes in the network out
of a multitude of possible choices (Henry et al., 2013) that can repro-
duce the biologically relevant cell states as network attractors, and
the reason for the chosen set of Boolean functions often remains
elusive. Also experimental observations in cell differentiation sys-
tems usually are consistent with a large number of possible Boolean
functions rather than suggesting a single well-defined set, giving
rise to a set of possible BNs that can describe the observed gene
expression patterns of the attractors (Henry et al., 2013). Thus, one
always wonders whether the reported results would still hold for
other choices of functions and how structurally robust the predicted
dynamics is for the observed attractor states.

A more stringent requirement on a model capturing the devel-
opment of multicelluar organisms is the following constraint. In
addition to recapitulating the multiple observed attractors of the
network, the model of the developmental GRN should also repro-
duce the experimentally observed relative stabilities of attractors,
i.e., the model has to relate the different attractor states to each
other based on their relative stabilities. By that we mean the relative
ease for transitioning from one attractor state (A) to another state
(B) which epitomizes the developmental process. More formally,
in a stochastic system, the relative ease of transitioning from state
A to state B would be given by the probability P(A → B) for tran-
sition from A to B (given random flutuations in gene expression).
Note that such transition probabilties are typically asymmetric (i.e.,
P(A → B) /= P(B → A))—a property that ultimately accounts for the
directionality (irreversibility) of development.

Interactions between genes collectively produce the devel-
opmental ordering of different cell types which is robust and
repeatable during embryogenesis. Therefore, once the multiple
attractors of the dynamical system are determined, it is necessary
to evaluate their relative stabilities in order to derive a consistent
relative ordering for all attractors in a developmental process (if one
exists). Recently, some of us have derived a framework to calculate
the relative stabilities of cell attractors in continuous ODE-based
GRN models using least action principles (Zhou et al., 2012). How-
ever, ODE-based GRN models are not well-suited to model large
networks, let alone ensembles of networks, for which BNs are com-

monly used (Kauffman, 1969, 1993; Shmulevich and Kauffman,
2004).

In this paper, we  present a mathematical framework for cal-
culating the relative stabilities of cell attractors and transitions,
and hence deriving the notion of a landscape in BN models of
development. We  use a minimal GRN for pancreas development
as an example to demonstrate the utility of our method. Imposing
the observed relative ordering of attractors as a novel phenotypic
constraint affords evaluation of ensembles of BNs (with a given
network structure but different sets of Boolean functions) that
are compatible with multiple observed attractors of the GRN. Our
method can be used to reconstruct simple BN models for develop-
mental processes from available information on GRN architecture
and relative stability of attractor states, and thus, can predict the
efforts associated with particular state transitions of interest which
in turn can facilitate the rational protocol design for cell reprogram-
ming in regenerative medicine.

2. Modeling framework

2.1. Boolean network (BN) model

BN model for a GRN is specified by its set of nodes, directed edges
and Boolean functions. In a BN, the nodes represent genes while
the edges represent interactions among genes in the network. Any
gene i in a BN at a given time can be in one of two expression states:
on if its state xi = 1 and off if its state xi = 0. For a m-gene BN, the
state vector Xt = (x1 (t) , x2 (t) , . . .,  xm (t)) gives the expression of
all genes at discrete time t in the network. For each gene i in a BN,
a Boolean function Fi determines the output value xi at time t + 1
given the state of its input genes at time t. Thus, the gene expression
state of a BN at any time step is governed by the recursive equation:

Xt+1 = F
(

Xt
)

(1)

where Xt is a m-dimensional binary vector (0 or 1) that gives the
expression of all genes at time step t. F encapsulates both the
network topology and Boolean functions at all nodes, and thus,
contains the information determining the dynamics of the BN.

For a m-gene BN, there are 2m possible states. A sequence of
states X0, . . .,  Xt , Xt+1, . . . forms a trajectory in the state space. Tra-
jectories converge in a deterministic (noise-free) system. Since the
state space is finite, the trajectories eventually converge either to
a single state (point attractor) or a cycle of states (cyclic attractor).
In the extreme case, a cyclic attractor encompasses all or almost all
possible network states, and given the large number of states 2m,
such behavior will appear chaotic.  For any given attractor, its asso-
ciated basin of attraction is the set of initial states that will converge
to that attractor. Attractors of a BN are charaterized by the size (and
shape) of their associated basin of attraction. The network topol-
ogy (i.e., the set of nodes and edges) and the Boolean functions at
each node fully determine the attractor structure—which consists of
attractors, trajectories and basins of attraction. The attractor struc-
ture can be determined by explicitly evaluating all state transitions
X1 = F

(
X0

)
for all 2m possible initial states X0. An example of a 4-

gene GRN with Boolean functions and resulting attractor structure
is shown in Fig. 1.

2.2. Transition matrix and BN dynamics

Spontaneous transitions between attractors that underlie the
epigenetic landscape or the quasi-potential landscape requires prob-
abilistic (noise-driven) dynamics. A discrete Markov model can be
used to describe the BN dynamics. Let pi give the probability for
the occupation of a state si, and Tij give the transition probability
from state sj to state si. In a BN with m genes, there are 2m pos-
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