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enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene
expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could
contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the
mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that
involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications,
and the interactions between them. The development of next-generation sequencing techniques has
allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical
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Enhancers
Promoters genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory
Machine learning events and the deluge of sequencing data require accurate and efficient computational approaches, in
Deep learning particular, machine learning techniques. In this review, we describe machine learning approaches for pre-
Enserpble lea}'ning dicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation
Data integration sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose

of this review is to attract computational experts and data scientists to advance this field.
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1. Introduction

In the human genome, less than 2% of the DNA sequence
comprises protein-coding exons. The rest of the genome is non-
coding and was previously regarded as junk DNA (Alexander et al.,
2010). However, recent genome studies have unveiled that many
of the non-coding sequences are transcribed and/or comprise reg-
ulatory regions used for transcriptional regulation (The ENCODE
Project Consortium, 2012; Morris and Mattick, 2014). Cis-regulatory
elements (CREs) are cis-acting non-coding DNA regions that reg-
ulate the transcription of genes. Promoters, enhancers, silencers,
and insulators are among the key cis-regulatory elements (Fig. 1)
(Noonan and McCallion, 2010). Within the nucleus of cells, active
regulatory regions are nucleosome-depleted allowing transcription
factors (TFs) to be recruited. Containing the transcription start sites
(TSSs) of a gene, a promoter functions like a switch to turn on or off
the transcription of the target gene (Fig. 1) (Lenhard et al., 2015). An
enhancer (or silencer) can dynamically control the expression level
of its target gene(s) through its interaction with promoters, even
if they are far away from their target genes in the linear sequence
space. An enhancer may reside in the intergenic region upstream or
downstream of its target gene(s), and may also be embedded in an
intronic region of a gene. Although distal to its target promoter(s)
in linear space, a transcriptionally active enhancer is brought close
to its target promoter by DNA looping in 3D nuclear space (Ong
and Corces, 2011; Bickmore, 2013; Shlyueva et al., 2014) (Fig. 1).
Two insulators can establish the boundaries of a regulatory domain
within which an enhancer is unable to act beyond the insulator,
blocking influence on the genes outside the domain (Fig. 1) (Raab
and Kamakaka, 2010; Symmons et al., 2014; Liu et al., 2015). CREs
play essential roles in determining which genes are specifically
active in a cell type (Ong and Corces, 2012; Lovén et al., 2013;
Hnisz et al., 2013), quantitatively controlling the expression lev-
els of these genes at the right times, and confining the regulatory
domains of certain functions (Symmons et al., 2014; Dowen et al.,
2014). Variations in the cis-regulatory regions have been reported
to cause assorted abnormal phenotype changes (Mathelier et al.,
2015; Lupianez et al., 2015). Thus, identifying and annotating the
CREs in the human genome is an important goal for clinical genetics.

Previously it was difficult to accurately annotate the non-coding
regions due to the complexity of regulatory mechanisms and the
lack of in depth data. Predictions of transcription factor binding
sites (TFBSs) based purely on position weight matrices (PWMs)
(Wasserman and Sandelin, 2004 ) have been useful to narrow down
potential binding sites, but can suffer from high rates of false
positives. In virtue of next-generation sequencing (NGS) techniques
snapshotting various aspects of the genome, it becomes possible
to identify CREs genome-wide. ChIP-seq (chromatin immunopre-
cipitation followed by sequencing) enables us to identify TFBSs
and histone modifications (Johnson et al,, 2007). RNA-seq tech-
niques can precisely indicate the transcriptional activity of genes
and exons (Wang et al., 2009). Nucleosome-depleted regions likely
to contain CREs can be identified by DNase-seq (DNase I hyper-
sensitive sites sequencing) (Boyle et al., 2008) and FAIRE-seq

(formaldehyde-assisted isolation of regulatory elements) (Giresi
et al., 2007). The chromatin interactions in 3D space can be cap-
tured by ChIA-PET (chromatin interaction analysis by paired-end
tag sequencing) (Fullwood et al., 2009) and Hi-C (high-throughput
chromosome conformation capture) (Dixon et al., 2012) tech-
niques. CAGE (cap analysis gene expression) (Andersson et al.,
2014) and GRO-seq (global run-on and sequencing) (Core et al.,
2008) are able to capture the TSSs of promoters and enhancers RNAs
(eRNAs).

How can we best take advantage of the large volumes of
genome-scale data generated by these techniques in order to pin-
point CREs across the entire genome? Machine learning consists
of statistical modelling techniques that automatically learn useful
knowledge from input data and infer unknowns based on a set of
knowns. Thus, these data-driven intelligent algorithms emerge as
key tools for the precise identification of CREs.

In this review, we focus on existing and potential machine learn-
ing approaches for the prediction of CREs by incorporating various
genome-scale data sets. Instead of simply listing all related machine
learning methods, the availability of training regions and the inte-
gration of various genomic data sets are the main focus throughout
this review. Several reviews with different perspectives have been
recently published. For a deeper discussion of the properties of
enhancers, please refer to Pennacchio et al. (2013). Informative fea-
tures to predict enhancers are reviewed in Shlyueva et al. (2014)
and Wang et al. (2013) (this review also surveyed supervised meth-
ods). Our group has reviewed the methods of identifying TFBSs and
predicting the impact of variations within TFBSs in Mathelier et al.
(2015). See Lam et al. (2014) and Lai and Shiekhattar (2014) for
the potential functionality and mechanisms of enhancer RNAs in
gene transcription. Methods used in the pre-NGS era are reviewed
in Wasserman and Sandelin (2004) and Pan (2006).

The rest of this review is organized as follows. The main sources
of NGS data used for machine-learning based CRE predictions are
given in Section 2. Unsupervised learning methods are reviewed in
Section 3. We summarize supervised methods in Section 4. Section
5 covers deep learning methods. Future directions are discussed in
Section 6.

2. Open-source data

Over the last few years, a tremendous amount of NGS data has
been generated by several big consortia, each focusing on different
goals (see Table 1). The ENCODE (Encyclopedia of DNA Elements)
Consortium (The ENCODE Project Consortium, 2012) aims to build
a comprehensive list of functional elements in the human genome.
The goal of the NIH Roadmap Epigenomics Program (Roadmap
Epigenomics Consortium, 2015) is to create an epigenomic atlas
for primary cells and tissues in human. The objective of the FAN-
TOMS5 (Functional Annotation Of the Mammalian Genome) Project
(The FANTOM Consortium, 2014; Andersson et al., 2014) is to
uncover transcriptional regulatory networks based on transcript
initiation positions. NGS data used in published articles are fre-
quently deposited in the GEO (Gene Expression Omnibus) data
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