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Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development
of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind
either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can
evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however,
it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism
is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the
receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic
HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1
isolates that assist in the biological understanding of dual-tropism and develop an approach for their
detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence
was represented by 73 structural, biochemical and regional features. These features were provided to
an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study
resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The
approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated
with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism

decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Approximately 34 million people are infected with HIV-1 world-
wide and more than 1.1 million live with HIV-1 infection in the
United States (Hall et al., 2008). While combined antiretroviral ther-
apy (cART) has increased the lifespan of HIV-1-infected individuals,
cART does not clear viral infection (Alexaki et al., 2008; Aquaro
et al., 1998). Its success, however, has supported the current mis-
sion to cure HIV-1 disease (Stevenson, 2014). However, patients
can acquire resistance to cART, which results from specific genetic
mutations in the viral genome (Barrie et al., 1996; Gulnik et al.,
1995). Resistance creates the need for patients to change medi-
cation with drugs that attack the virus in different ways (Cortez
and Maldarelli, 2011). HIV-1 variation, whether occurring natu-
rally or in direct response to cART, also influences escape from
immune surveillance (Coffin, 1995), disease pathogenesis (Salemi
et al., 2005, 2009), development of viral reservoirs (Salemi et al.,

* Corresponding author.
E-mail address: susanna@bioinfox.com (S.L. Lamers).

http://dx.doi.org/10.1016/j.biosystems.2015.09.007
0303-2647/© 2015 Elsevier Ireland Ltd. All rights reserved.

2009), and a wide spectrum of diseases associated with metabolic
disorder (Fitch et al., 2013; Bernstein et al., 2006; Estrada and
Portilla, 2011), neurological disorder (Anthony et al., 2005) and
cancer (Salemi et al., 2009; Ng and McGrath, 1998; Lamers et al.,
2010).

In order to enter immune cells, HIV-1 first binds a CD4 cellular
receptor and then another receptor, usually CCR5 (R5) or CXCR4
(X4) (MMW). These co-receptors are present on the surface of both
macrophages and T-cells (Goodenow and Collman, 2006); how-
ever, the complex preference of HIV-1 for specific co-receptors
varies under different conditions, such as passage in cell cultures
(Goodenow and Collman, 2006) or the state of the immune sys-
tem (Gorry et al., 2005). Still, as co-receptor binding is required for
successful HIV-1 infection, exploiting the process for therapeutic
intervention remains a popular concept. Entry inhibitors (Els) are
a class of drugs designed specifically to block coreceptors, thereby
limiting the ability of HIV-1 to infect new cells. Currently, Maraviroc
(MacArthur and Novak, 2008; Dorr et al., 2005) blocks CCR5 while
drug development continues for drugs that target CXCR4. Adminis-
tering these drugs requires matching the therapy to the appropriate
receptor in use by HIV-1. Furthermore, HIV-1 can evolve to acquire
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resistance to Els (Starr-Spires and Collman, 2002) in a manner sim-
ilar to that of other antiretroviral drugs. Therefore, the ability to
monitor which receptor(s) are being used for viral entry is crit-
ical for appropriate treatment options based on the current and
anticipated evolution of the virus.

R5 HIV-1 plays a crucial role in the transmission and establish-
ment of HIV-1 (Gorry and Ancuta, 2011). Classically, the emergence
of X4 viruses has been associated with the progression of acquired
immune deficiency syndrome (AIDS, 1990; Moyle et al., 2005).
However, many patients never evolve X4 HIV-1 and instead evolve
a highly macrophage-tropic HIV-1 with enhanced tropism for R5
(Gorryetal.,2005) or “dual-tropic” HIV-1 (R5X4)(Tasca et al., 2008),
which can use both co-receptors for cellular entry (Goodenow
and Collman, 2006; Gorry and Ancuta, 2011; Loftin et al., 2011;
Robertson et al., 2000). Dual tropic HIV-1 is an interesting interme-
diate in that it is less efficient in binding either receptor than R5
or X4, but still allows for viral entry (Tasca et al., 2008). Further-
more, recent views suggest that X4 emergence is not associated
with a highly pathogenic virus, but rather is the result of reduced
hostimmune efficiency (Tasca et al., 2008), which permits the accu-
mulation of viral diversity (Mild et al., 2013), resulting in a wider
spectrum of co-receptor usage. In this light, the ability to identify
R5 and R5X4 viruses prior to X4 emergence with high accuracy
would accelerate the study of HIV-1 evolution (Campbell et al.,
2014), the staging of disease progression (Gorry et al., 2005; Berger
et al.,, 1999; Broder and Collman, 1997; Murakami and Yamamoto,
2000; Weber et al., 2006; Clapham and McKnight, 2002; Moore
etal.,2004; Weiss, 2002; Doms et al.,2000), and the development of
appropriate personalized therapies for those infected (Starr-Spires
and Collman, 2002; Katzenstein, 2003).

One of the principal determinants of HIV-1 interactions with
R5 or X4 cellular coreceptors is the V3 domain of the HIV-1 enve-
lope protein (Resch et al., 2001). Co-receptor selection of viral
isolates in this region is influenced by amino acid substitutions,
insertions, and deletions (Hoffman et al., 2002). HIV-1 V3 sequence
data sets with known phenotypes combined with artificial neural
networks (ANNs) or other machine learning strategies, primarily
with a focus on backpropagation for training, have been applied to
predict R5 vs. X4 co-receptor usage with reasonable success (Resch
etal., 2001; loannidis et al., 2003; Wang and Larder, 2003; Brumme
et al.,, 2004; Milich et al., 1993). However, the continued inability
to identify dual-tropic R5X4, could account for decreased sensi-
tivity and specificity of these methods if true R5X4 sequences are
actually being misclassified as either R5 or X4 for model develop-
ment and testing. Further, in the case of artificial neural networks
(ANNSs), although backpropagation is a common strategy for ANN
optimization, convergence is only guaranteed to a locally optimal
solution. A different approach to ANN optimization makes use of
evolutionary computation to discover weight assignments and/or
evolve the ANN architecture itself. Evolved neural networks (ENNs)
(Fogel, 2008; Fogel et al., 1990; Porto et al., 1995; Yao, 1999; Kohl
and Miikkulainen, 2011) have been applied with success to a wide
variety of biochemical data mining problems (Fogel, 2008; Hecht
et al., 2008; Hecht and Fogel, 2007; Lamers et al., 2008) and afford
the researcher with the opportunity not only optimize a model for
input-output mapping but to examine which feature combinations
taken from a larger set of possible features are most relevant for
high accuracy classification.

In a previous publication, we presented the first use of ENNs
to classify HIV-I co-receptor use (Lamers et al., 2008). That initial
research was based on a small public set of 149 HIV-1 V3 loop
sequences (77 R5, 31 R5X4, and 41 X4 sequences) from a variety
of HIV-1 subtypes with known tropisms. 9 biochemical features for
each of 35 amino acid positions and 2 additional V3-domain-level
features were calculated. Fully connected feed-forward ENNs were
used to map the features for each sequence to co-receptor usage

classification using increasingly larger feature sets as inputs. The
effort not only produced useful classifiers but also helped identify
feature combinations that were important for classification. ENNs
were trained to classify R5 sequences from X4 sequences, and addi-
tional ENNs were trained to classify R5X4 sequences from either R5
or X4 sequences. This approach led to a mean classification accu-
racy of 88.9% for R5 vs. X4 and a mean classification accuracy of
75.5% for R5X4 vs. R5 or X4. This initial approach demonstrated
strong potential for correctly classifying dual-tropic HIV-1 using
an expanded set of sequences and features. In this paper, we used
a larger database of over 1559 sequences and a broader assort-
ment of 73 features to derive classifiers for four separate tropism
decisions (R5 vs. X4, R5 vs. R5X4, X4 vs. R5X4, and R5 vs. R5X4 vs.
X4). While many strategies for nonlinear machine learning could
be applied to this problem such as support vector machines (SVMs),
we specifically chose to use ENNs for this work in order to compare
results to our previous effort as described above. Further, we eval-
uated the effects of balanced vs. unbalanced data sets on model
performance. The results provide an indication of important fea-
tures associated with tropism classification as well as improved
detection of dual-tropic viruses.

2. Methods

V3 Loop Sequences. Publically available V3 loop sequences (rel-
ative to HXB2 positions 7110-7217) for HIV-1 subtype B were
downloaded from the HIV Database at the Los Alamos National Lab-
oratory (http://www.hiv.lanl.gov/content/index) and translated
into amino acid sequences. The search criteria limited each data set
to either “only CCR5,” “only CXCR4,” or “only R5X4.”. The resulting
database consisted of 3452 R5 sequences, 197 X4 sequences, and
545 R5X4 sequences. The sequences were aligned using ClustalW
within the MEGA5 sequence analysis package (Tamura et al., 2011)
and then manually edited to correct for any obvious alignment
errors. Identical sequences were removed. The final alignment used
for feature generation below contained 1223 unique R5 sequences,
241 unique R5X4 sequences, and 95 unique X4 sequences. No lim-
itation was put on the phenotype or culture method in order to
preserve sequence diversity.

2.1. Feature generation and processing

While many studies have focused on characteristics at spe-
cific sites in the V3 loop relative to tropism (Briggs et al., 2000;
Wilkin and Gulick, 2012; Delgado et al., 2012), we took a different
unbiased approach using both site-specific and regional charac-
teristics. For each sequence, 73 features were calculated for each
of the 40 alignment positions (Supplemental Table 1). These fea-
tures were selected using the available tropism literature and
also through resources such as ExPASy programs ProtScale and
ProtParam (www.expasy.org) (Wilkins et al., 1999). While some
features were position-dependent (e.g., glycosylation at specific
positions), the remaining features were calculated for all positions
and, to determine if regional features were associated with tropism,
the alignment was further reduced to smaller segments: the 5’ end
of the alignment (positions 9-14), the 3’ end of the alignment (pos-
itions 22-28) and lastly for a second region at the 3’ end of the
alignment (positions 31-37). This process resulted in ~3.000 pos-
sible feature-positions that could be provided as input to a model
for classification. Linear regression was then used to determine
which features were useful in separating the tropism classes inde-
pendently for each of four decisions (R5 vs. R5X4, R5 vs. X4, R5X4
vs. X4, and R5 vs. R5X4 vs. X4) and to reduce the number of features
to those with highest correlation to tropism class decision for each
decision type.
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