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a b s t r a c t

The origin of allometric scaling of metabolic rate is a long-standing question in biology. Several mod-
els have been proposed for explaining the origin; however, they have advantages and disadvantages.
In particular, previous models only demonstrate either two important observations for the allometric
scaling: the variability of scaling exponents and predominance of 3/4-power law. Thus, these models
have a dispute over their validity. In this study, we propose a simple geometry model, and show that a
hypothesis that total surface area of cells determines metabolic rate can reproduce these two observa-
tions by combining two concepts: the impact of cell sizes on metabolic rate and fractal-like (hierarchical)
organization. The proposed model both theoretically and numerically demonstrates the approximately
3/4-power law although several different biological strategies are considered. The model validity is con-
firmed using empirical data. Furthermore, the model suggests the importance of heterogeneity of cell size
for the emergence of the allometric scaling. The proposed model provides intuitive and unique insights
into the origin of allometric scaling laws in biology, despite several limitations of the model.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Metabolic processes are essential for physiological functions
and responsible for maintaining life (Takemoto, 2012; Takemoto
and Oosawa, 2012). The relationship between metabolic rate B and
body mass M is an important and interesting topic of scientific
inquiry not only for researchers in the field of basic biology but
also for investigators in ecology and medical research, and it is
well known to approximately obey a power law (West et al., 2002;
Brown et al., 2004): B ∝ M� . This allometry is positioned as a signif-
icant equation in both biology and ecology because it is useful for
understanding and for estimating the energy metabolism, lifespan
(Speakman, 2005), and animal space use (Jetz et al., 2004); in par-
ticular, determination of the scaling exponent � is a long-standing
question.

A pioneering study includes the surface law found by Rubner
in the 1880s (White and Seymour, 2003); in particular, Rubner
reported that metabolic rate is proportional to M2/3 in mammals.
The Rubner’s surface law is immediately derived when assuming
simple geometric and physical principles: metabolic rate (e.g., heat
production rate) is proportional to the rate of energy (e.g., heat)
dissipated through body surface because of homeostasis.
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Contrary to the prediction from the surface law, in 1932, Kleiber
proposed that metabolic rate is proportional to M3/4 (White and
Seymour, 2003; West et al., 2002; Speakman, 2005; Brown et al.,
2004). Further studies have confirmed that the Kleiber’s (i.e., 3/4-
power) law is predominant at least in plants and animals (reviewed
in Savage et al., 2004): this allometric scaling is observed in wide-
ranging organisms (i.e., microorganisms to elephants).

West et al. (1997) have proposed a model (West–Brown–
Enquist (WBE) model) for explaining the origin of the 3/4-power
law. This model assumes that oxygen and nutrients are transported
through space-filling fractal networks of branching tubes, in which
the number of capillaries (leaves in the case of plants) is propor-
tional to metabolic rate. Since the WBE model clearly illustrates the
Kleiber’s law, it is frequently used for understanding the allometric
scaling.

In addition to this, further studies have proposed several alter-
native models based on the fourth dimension of life (West et al.,
1999), transport networks (Banavar et al., 1999), and quantum
metabolism (Demetrius and Tuszynski, 2010).

However, these models have several limitations (e.g., Price
et al., 2012 have carefully evaluated the WBE model using empir-
ical data). In particular, Kozłowski and Konarzewski (2004) have
questioned the universality of the 3/4-power law. In fact, sev-
eral studies suggest that the scaling exponent � is variable. For
example, White and Seymour (2003) have reported that metabolic
rate is proportional to M2/3 in mammals when considering body
temperature, digestive state, and phylogeny. Darveau et al. (2002)
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have illustrated that the approximately 3/4-power law results from
the sum of the influences of multiple contributors to metabolism
and control (i.e., the sum of allometric relationships observed in
a number of biological processes). Reich et al. (2006) found that a
linear relationship between the rate of respiratory metabolism and
body mass (i.e., B ∝ M) is observed in plants although Enquist et al.
(2007) have refuted this conclusion. Similarly, the observed similar
mean mass-specific metabolic rates across life’s major domains
(Makarieva et al., 2008) also implies that B ∝ M. To explain the
variability of the scaling exponent, however, the WBE model can
be modified (Price et al., 2007; Kolokotrones et al., 2010).

Of particular interest is the fact that the scaling exponent varies
according to cell size (Kozłowski et al., 2003; Starostová et al.,
2009). Thus, Kozłowski et al. (2003) have proposed a simple model
(Kozłowski–Konarzewski–Gawelczyk (KKG) model) based on cell
size, inspired by the fact that a large part of standard metabolic costs
are spent preserving ionic gradients on cell membranes (Szarski,
1983; Porter and Brand, 1993). This model considers an extension
of the Rubner’s surface law: a hypothesis that metabolic rates are
determined by total surface area of cells rather than body surface.
The KKG model can explain the variability of the scaling exponent;
especially, the exponent can fall within the range between 2/3 and
1. For example, B ∝ M2/3 when cell size is proportional to body size.
On the other hand, B ∝ M when cell size is independent from body
size. The variability of the scaling exponent has already well known
in terms of geometry (Okie, 2013; Hirst et al., 2014).

Brown et al. (2005) have argued against the KKG model. Since
cell size is almost independent from body size, as explained by
Kozłowski et al. (2003), the KKG model suggests B ∝ M, indicating
that it contradicts the predominance of the 3/4-power law (Savage
et al., 2004).

Is the KKG model or a hypothesis that the total surface area
determines metabolic rate not really useful for understanding the
allometric scaling law? In this study, we propose a simple geom-
etry model, an extended KKG model, and show approximately
3/4-power law can be also emerged from this hypothesis by consid-
ering the concept of fractal-like (hierarchical) organization of the
WBE model. This result suggests that the hypothesis is evidently
useful for understanding allometric scaling of metabolic rate. More-
over, our model explains both validity of the scaling exponent and
ubiquity of the 3/4-power laws, and it suggests that the allometric
scaling of metabolic rate is affects by cell size distributions, rather
than cell sizes.

2. A geometry model

The KKG model assumes that organisms consist of uniform
distributed isometric cells; however, such an assumption may
be unsatisfied because organisms show fractal-like (hierarchical)
organization, as pointed out by West et al. (1997). Furthermore,
heterogeneous distributions such as log-normal distribution are
widely observed in real-world systems (Limpert et al., 2001). Mul-
tiplicative effects and hierarchical organizations are known to
generate log-normal distributions (Kobayashi et al., 2011). In par-
ticular, a simple model of fracture (Yamamoto and Yamazaki, 2013),
originally proposed by A. N. Kolmogorov in 1941, is an instructive
example, and it considers hierarchical divisions of one rod. Thus, we
expected that such heterogeneous distributions of cell sizes result-
ing from the hierarchical organization lead to B ∝ M� with � < 1 even
if (mean) size of cell sizes is almost independent from body size.

Inspired by this fracture model, we propose a geometry model,
called fractal-like cube division (FCD) model (Fig. 1). The FCD model
can be interpreted as a 3-dimensional version of the fracture model;
however, note that division processes are slightly different between
the fracture model and FCD model because of the consideration
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Fig. 1. Schematic diagram depicting the fractal-like cube division (FCD) model. (A)
Cube with the length of L. (B) The cube of (A) is divided into eight cubes (cuboids)
with the length of L/2. A cube (cuboid) selected at random (i.e., with the probability
of 1/8) is indicated by gray. (C) As in (B), the selected cube (cuboid) is separated into
8 cubes (cuboids). (D) A state of the cube of (A) after T divisions.
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Fig. 2. Division rules of the simple FCD model (A) and general FCD model (B).

of fractal-like (hierarchical) organization of cell sizes (e.g., tree
branches are more frequently divided than the tree trunk is).

We first explain a simple case of the FCD model. In the simple
FCD model, the cube with the length of L (Fig. 1A) is divided accord-
ing the following procedures. (i) The cube is divided into eight cubes
(Figs. 1B and 2A). (ii) A randomly selected cube is further separated
into eight cubes (Fig. 1C). (iii) The procedure (ii) is repeated until
t = T (Fig. 1D).

However, this division rule of the simple FCD model may be
by the numbers. To consider more flexible divisions, we next pro-
pose a general FCD model. This model considers a division of the
cuboid Ch,w,d composed of the height of h, width of w, and depth
of d, in the procedure (ii). In particular, this cuboid is divided
into eight cuboids according to the parameter p drawn from a
probability distribution with the range from 0 to 1 (e.g., uniform
distribution U(0, 1)) (Fig. 2B): Cph,pw,pd, Cph,pw,(1−p)d, Cph,(1−p)w,pd,
Cph,(1−p)w,(1−p)d, C(1−p)h,pw,pd, C(1−p)h,pw,(1−p)d, C(1−p)h,(1−p)w,pd, and
C(1−p)h,(1−p)w,(1−p)d.

The general FCD model is equivalent to the simple FCD model
when p = 0.5 at all times.

3. Results and discussion

3.1. Analytical solutions of geometric parameters

We here provide analytical solutions of geometric properties
of the simple FCD model; however, the analytical results may be
applicable to the general FCD model (see Section 3.2).

To obtain an analytical solution of the surface area of the simple
FCD model using a mean field approximation, we consider the time
evolution of the number nD(t) of cubes with the length of (1/2)DL
when D > 0 (i.e., t > 0), where D denotes the cube division number.

nD(t) increases by 8 when a cube with the length of (1/2)D−1L
is selected with the probability of nD−1(t)/N(t), and it decreases by
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