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In this paper, we analyze a stochastic Gilpin—-Ayala population model with Markovian switching and
white noise. The Gilpin-Ayala parameter is also allowed to switch. We establish the global stability of the
trivial equilibrium state of the model. Verifiable sufficient conditions which guarantee the extinction and
persistence are provided. Furthermore, we show the existence of a stationary distribution. The analytical
results are illustrated by computer simulations.
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1. Introduction

Ecology is the area of biology that studies the distribution and
abundance of different types of organism and how these proper-
ties are affected by interactions between the organisms and their
abiotic and biotic environment. The environment of an organism
includes both physical properties, which can be described as the
sum of local abiotic factors such as insolation, climate, and geology,
as well as the other organisms that share its habitat. Population
ecology is a sub-field of ecology that deals with the dynamics of
species populations and how these populations interact with the
environment. It is concerned with the study of how the popula-
tion sizes of species living together in groups change over time
and space (Begon et al., 2006). Many types of mathematical mod-
els have been proposed in the literature to provide an abstract of
some significant aspect of true ecological situation. The books by
Golpalsamy (1992) and Kuang (1993) are good references in this
subject. The well-known and mathematically simple model used
to describe the temporal evolution of a single species population
in a constant environment is the logistic model described by the
ordinary differential equation:

dx(t) = x(£)(r — kx(t))dt, (1)
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where x(t) stands for the population size at time t, r>0 repre-
sents the growth rate of the species while k>0 represents the
self-inhibition rate. However, the rate of change of the population
size in the logistic model (1) is a linear, namely r — kx(t). This way,
many important factors are neglected. Therefore, many modifica-
tions of model (1) have been suggested in order to obtain more
realistic solutions (Golpalsamy, 1992; Gilpin and Ayala, 1973; May,
1973). Gilpin and Ayala (1973) claimed that a little more compli-
cated model was needed and proposed their following model:

dx(t) = x(£)(r — kx’(£))dt, 2)

where 6 is a positive parameter to modify the classical logistic
model.

In the real world, population systems are always influenced by
stochastic perturbations. Rand and Wilson (1991) partitioned these
stochastic effects into three classes: demographic, environmental
and observational errors. The latter are easier to handle as they are
not involved in the dynamics. The demographic stochasticity origi-
nates from the continuous approximation in a system of differential
equations, instead of being described by discreet, integer-valued
process (Hethcote, 1998; May, 1973). The effects of demographic
stochasticity can be neglected when the population sizes are large
enough. However, the effects of environmental noises remain the
same for all population sizes. May (1973) has revealed the fact
that because of the environmental noise, the birth rate, carrying
capacity and other parameters involved in the system exhibit ran-
dom fluctuation to a greater or lesser extent. Thus, the standard
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technique of parameter perturbation has become more and more
popular for building stochastic population models. It is well known
that a given ordinary differential equation and its corresponding
stochastic equation with perturbed parameters may have signif-
icant differences. The pioneering work was due to Khasminskii
(1980), who established an unstable system by using two white
noise sources, and his work opened a new chapter in the study of
stochastic stabilisation. Several years later, Mao and his co-workers
showed in Mao et al.(2002) another important fact, namely that the
environmental noise can suppress explosions in a finite time in pop-
ulation dynamics and this paper had an important impact on the
study of stochastic population systems. In recent years, stochastic
versions Gilpin-Ayala model have been studied by many authors.
We mention some of the works (Jiang et al., 2008; Jiang and Shi,
2005; Jovanovic and Vasilova, 2013; Lian and Hu, 2006, 2008; Liu
and Wang, 2012; Li, 2013; Vasilova and Jovanovic, 2011; Vasilova,
2013) and the references therein. Jiang et al. (2008) and Jiang and
Shi (2005) considered the following non-autonomous randomized
model based on (2):

dx(t) = x(E)(r(t) — k(EWO(E)dE + a(tx(t)dB(L), (3)

where B(t) is a one-dimensional Brownian motion and o2(t) repre-
sents the intensity of the white noise. The authors have established
the explicit global positive solution of Eq. (3). Moreover, they
showed that E(1/x(t)) has a unique positive periodic solution. They
also discussed the stochastic permanence and the global attractiv-
ity of the solutions.

In fact, there are several types of environmental noise. Besides
the white noise there is also the telegraph noise (Hu and Wang,
2011; Luo and Mao, 2007, 2009; Li et al., 2009; Zhu and Yin,
2009). The latter can be demonstrated as a switching between
two or more regimes of environment, which differ by factors such
as the availability of food and climatic characteristics. Frequently,
the switching among different environments is memoryless and
the waiting time for the next switch is exponentially distributed.
The regime-switching can hence be modeled by a continuous-time
Markov chain (y(t))o taking values in a finite state space S=
{1,2, ..., m} and having the generator @ = (¢uv)1<u,u<m- Recently,
stochastic modeling with Markovian switching has received a great
deal of attention. For instance, Takeuchi et al. (2006) investigated
the evolution of a system composed of two predator-prey deter-
ministic systems described by Lotka-Volterra equations in random
environment. Du et al. (2004) studied the trajectory behavior of
Lotka-Volterra competition bistable systems and systems with
telegraph noise. Some asymptotic properties of the population
dynamics model under regime switching have been established
in the literature (Luo and Mao, 2007, 2009; Li et al., 2009). Espe-
cially, the results of Luo and Mao (2007, 2009) which showed that
the positive solution of the associated stochastic differential equa-
tion does not explode in finite time with probability 1. Moreover,
they demonstrated that the solution is stochastically ultimately
bounded and the time average of the second moment of the solu-
tion is also bounded. Very recently, Settati and Lahrouz (2014)
have investigated the positive recurrence of an n-species model
of facultative mutualism under regime switching system. Li et al.
(2009) discussed the stochastic permanence and extinction of a
Lotka-Volterra system under regime switching, and they gave an
estimation of the limit of the average in time of the sample path.
Meng and Wang (2011, 2012) have studied the following switching
diffusion Gilpin—-Ayala population model

dx(t) = (X(E)(r(y(t)) — k(y(E)x™1 (£)))dt + o1 (y(£))x(t)dB(t)
+aa(p(E)X! 02 (t)dB(t). (4)

The authors showed that Eq. (4) has a unique global positive solu-
tion for any given positive initial value. Moreover, they proved
under the standing hypothesis that (y(f))=0 is ergodic with
a unique stationary distribution 7 =(mq, 7y, ..., Ty), that the
asymptotic behavior of (4) is determined by the quantity b =
Zj'ilnj(r(j) - (oz%(j)/Z)). More precisely, the authors established
the following assertions:

(A1) If b < 0, then the population x(t) represented by (4) goes to
extinction almost surely. That is,

limx(t) = 0a.s.

t—o0

(A2) If b = 0, then the population is nonpersistent in the mean. That
is,

t
lim 1 / x(t)dt =0a.s.
t—>oo b 0

(A3) If b > 0, then the population is weakly persistent. That is

limsupx(t) > 0a.s.

t—o0

(A4) Ifb > 0, pyy >0 forall u #v,0<60, <1and 0<6; <1+6,. Then,
the population is stochastically permanent. That is, for any
€¢e(0, 1), there exists a pair of constants 1 >0, >0 such
that

liminfP{x(t) > B1} >1—-¢€, liminfP{x(t) < By} >1-€.
t—o0 t—o0

Motivated by the above discussions, in this paper, we study the
hybrid system, or system with Markovian switching of the form

dx(t) = (X(O)r(y(1) = k(OROE))dt + a y(OW(O)dB(E).  (5)

The main concern of this paper is: if the overall system (5) con-
sists of stable subsystems and unstable subsystems, can the overall
system be stable?

The remainder of the paper is structured into four more sections
as follows. In Section 2, we establish that the equilibrium state x=0
of system (5) is globally asymptotically stable in probability under
condition b < 0. In Section 3, we show that if & switch randomly
between two or more regimes then, the population is weakly per-
sistent under condition b > 0. we studied the lower-growth rate
and the upper-growth rate of the positive solutions. In addition,
we estimated the limit of the average in time of the sample paths
of solutions. In Section 4, we prove that under condition b > 0, the
system model (5) admits a unique ergodic stationary distribution.
At last, we introduce some figures to illustrate the main results.

2. Global stability

Throughout this paper, we suppose that there is a complete
probability space (£2, 7, {Ft};>0, P) with a filtration {F;};-¢ satis-
fying the usual conditions in which the one-dimensional Brownian
motion B(t) is defined. Let (y(t)):=0 be a right-continuous Markov
chain on the probability space (2, F, {Ft}ts0, P), taking values
in a finite state space S={1,2,...,m} with the generator @ =
(¢uv)l§u,v5m given, for At> 0, by

Guv At + o(At),
1+ puuAt + o(At),

ifu+v,

ifu=v.

P(y(t+ At)=vly(t) =u) = {
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