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a b s t r a c t

Biochemical networks depict the chemical interactions that take place among elements of living cells.
They aim to elucidate how cellular behavior and functional properties of the cell emerge from the relation-
ships between its components, i.e. molecules. Biochemical networks are largely characterized by dynamic
behavior, and exhibit high degrees of complexity. Hence, the interest in such networks is growing and they
have been the target of several recent modeling efforts. Signal transduction pathways (STPs) constitute a
class of biochemical networks that receive, process, and respond to stimuli from the environment, as well
as stimuli that are internal to the organism. An STP consists of a chain of intracellular signaling processes
that ultimately result in generating different cellular responses. This primer presents the methodologies
used for the modeling and simulation of biochemical networks, illustrated for STPs. These methodologies
range from qualitative to quantitative, and include structural as well as dynamic analysis techniques. We
describe the different methodologies, outline their underlying assumptions, and provide an assessment
of their advantages and disadvantages. Moreover, publicly and/or commercially available implementa-
tions of these methodologies are listed as appropriate. In particular, this primer aims to provide a clear
introduction and comprehensive coverage of biochemical modeling and simulation methodologies for
the non-expert, with specific focus on relevant literature of STPs.

© 2015 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Studying the individual components of a biological system is an
important initial step; however, this alone is not sufficient to arrive
at a derivation of the system behavior. Many properties arise at the
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system level only. Therefore, biology has shifted from the molecular
characterization of the biological system, towards the integration
of its components, their behavior, and their relationships. The latter
gave rise to the notion of systems biology. Systems biology attempts
to determine a system-level understanding of biological systems
through the examination of the structure and dynamics of cellu-
lar and organismal functions, rather than the characteristics of the
isolated parts of a cell or an organism (Ideker et al., 2001; Kitano,
2002).

Static diagrams, which merely describe a system by a collection
of components and their interconnections, are of little help when
it comes to understanding how the different components interact
to achieve a certain function (Kitano, 2002). The inherent complex-
ity of biological systems and the accumulation of huge amounts of
biological data mandate a systematic approach.

Using computational and mathematical models for biologi-
cal processes allows discovering emergent properties, examining
system behavior, and generating new hypotheses. Such mod-
els allow performing in silico experiments that would be very
expensive or impossible to perform in the laboratory (Decraene
and Hinze, 2010). In light of these benefits, new user-friendly
modeling languages and tools that allow biologists to represent
biological systems more intuitively are emerging. Moreover, formal
approaches are being incorporated in biological research, standard-
ized representations of biological data are being established, and
biological systems modeling is gaining better ground (Fisher and
Henzinger, 2007).

Biochemical networks constitute examples of biological sys-
tems that have been modeled extensively. Such networks are
classified into three broad categories: metabolic networks, gene
regulatory networks, and signaling networks. Metabolic networks
comprise the set of reactions that occur in living organisms for
the production and degradation of organic compounds needed for
an organism’s vital functions (Liiving et al., 2011).Gene regulatory
networks are concerned with the control of transcription, i.e., how
genes are up- and down-regulated in response to signals. Signaling
networks describe how cells receive, process, and respond to stimuli
from the environment, as well as stimuli that are internal to the
organism. In this primer, we present an introduction to the mod-
eling and simulation of biochemical networks, illustrated for the
class of signaling networks.

The rest of this primer is organized as follows. Section 2 dis-
cusses signaling networks in detail. Section 3 presents the different
methodologies used for modeling and simulation of biochemical
networks, with specific reference to models of signaling networks.
Relevant surveys describe similar methodologies (Andrews et al.,
2009; Decraene and Hinze, 2010; Eungdamrong and Iyengar,
2004a; Eungdamrong and Iyengar, 2004b; Fisher and Henzinger,
2007; Gilbert et al., 2006; Hughey et al., 2010; Materi and Wishart,
2007; Meng et al., 2004; Pahle, 2009; Pinney et al., 2003; Sreenath
et al., 2008; Turner et al., 2004). Some of these focus on only a
subset of methodologies and/or overlook the fundamental differ-
ences between the methodologies. On the other hand, this primer
covers a large number of methodologies and particularly aims to
provide a clear introduction and comprehensive coverage of the
methodologies for the non-expert. In particular, by using signaling
networks as an example, we try to establish a clear understanding
of the fundamentals of biochemical modeling and simulation. By
discussing relevant signal transduction models from the literature,
we aim to illustrate how the different formalisms capture different
behaviors of biochemical systems, and how modelers are guided at
their choice of method and at their modeling process. In Section 4,
we discuss modeling and analysis tools that are widely used in the
biochemical community. Finally, Section 5 provides a summary and
comparison of the methodologies, and the conclusions are given in
Section 6.

2. Signaling networks

In order for an organism to respond to internal and external
stimuli, its cells have to communicate together. Cells communi-
cate using intercellular signaling, i.e., either by sending out signaling
molecules in the extracellular space, or by direct contact between
neighboring cells (Krauss, 2004). When a signal arrives at a recip-
ient cell, certain proteins, called receptors, are activated. Activated
receptors pass on the signal to other proteins inside the cell and
this initiates a chain of intracellular signaling processes. Such chains
ultimately result in generating different cellular responses, such as
proliferation, differentiation, or apoptosis.

The set of successive events that take place as part of an intracel-
lular signaling chain are often termed a signal transduction pathway,
(STP). Generally, a ‘pathway’ is an abstraction that biologists use to
describe the core of a biochemical network, comprising a sequence
of events (Gilbert et al., 2006). It is used in the context of signaling,
metabolic, and gene regulatory networks. A common example
of an STP is the mitogen activated protein kinase (MAPK) path-
way. MAPKs are a family of protein kinases that mediate signals
from cell-surface receptors to different cellular compartments and
regulate various cellular activities. They are conserved in many
organisms, and they play an important role in many pathologi-
cal conditions, including cancer and other diseases (Zhang and Liu,
2002). Orton et al. (2005) compared three different models of the
MAPK pathway and illustrated how the models focus on different
parts of the same pathway. Different models include different sub-
sets of molecules and reactions and stop at different points in the
pathway, depending on the questions that they seek to answer.

STPs have been traditionally viewed as separate linear entities.
However, this description can no longer account for the complex
patterns observed in these pathways. STPs are very dense, and
have a large number of molecular species that dynamically move
between cellular organelles. These species do not only make linear
connections with other upstream and downstream components,
but they also exhibit a lot of branching, horizontal interconnections,
and even feedback loops (Mellman and Misteli, 2003). Moreover,
STPs are rarely isolated, i.e., there is usually crosstalk between the
different pathways.

Like their biological counterparts, models of STPs display
sophisticated structures. This is further complicated by the fact
that information about a particular pathway comes from various
databases and research work, possibly with different representa-
tions (Heiner et al., 2004). Several methods have been used to model
STPs, of which the most common are ordinary differential equations
(ODEs). However, new methods are being continuously proposed
and investigated. In general, models of STPs are classified into two
main categories: structural network models and dynamic analysis
models. Structural network models are based solely on connectivity
information. They can generate hypotheses regarding the structure
of the global network, as well as the function of individual pro-
teins. Such models reconstruct the topology of a signaling network.
On the other hand, dynamic analysis models require, in addition
to the network connectivity, numerical values of the kinetic rate
constants and the initial concentrations of signaling proteins and
complexes. These models measure the time-variant properties of
a network. In other words, once the associated quantitative data
are known, dynamic analysis of a reconstructed signaling network
can be carried out (Papin et al., 2005). It is believed that signaling
molecules interact dynamically and non-linearly to achieve speci-
ficity of responses, i.e., the ability to selectively activate a specific
cellular response (Pawson, 2004). For this reason, dynamic model-
ing has been the conventional method for modeling STPs. However,
since dynamic analysis models build upon structural network mod-
els, it is necessary to first verify the consistency and correctness of
the latter (Heiner et al., 2004).
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