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a b s t r a c t

Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a
growing interest in the non-homogeneous case. One of the most important models has been proposed in
Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The
Markov chain associated with the graph can be modified by erasing all non-trivial loops in its state space,
obtaining the so-called Embedded Markov chain (EMC). The fixation probability remains unchanged, but
the expected time to absorption (fixation or extinction) is reduced. In this paper, we shall use this idea to
compute asymptotically the average fixation probability for complete bipartite graphs Kn,m. To this end,
we firstly review some recent results on evolutionary dynamics on graphs trying to clarify some points.
We also revisit the ‘Star Theorem’ proved in Lieberman et al. (2005) for the star graphs K1,m. Theoretically,
EMC techniques allow fast computation of the fixation probability, but in practice this is not always true.
Thus, in the last part of the paper, we compare this algorithm with the standard Monte Carlo method for
some kind of complex networks.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction and motivation

Population genetics studies the genetic composition of biolog-
ical populations, and the changes in this composition that result
from the action of four different processes: natural selection, ran-
dom drift, mutation and migration. The modern evolutionary synthesis
combines Darwin’s thesis on natural selection and Mendel’s the-
ory of inheritance. According to this synthesis, the central object of
study in evolutionary dynamics is the frequency distribution of the
alternative forms (allele) that a hereditary unit (gene) can take in a
population evolving under these forces.
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Many mathematical models have been proposed to understand
evolutionary process. Introduced in Moran (1958), the Moran model
describes the change of gene frequency by random drift on a pop-
ulation of finite fixed size. This model has many variants, but we
assume for simplicity that involved organisms are haploids with
only two possible alleles a and A for a given locus. Suppose there is
a single individual with a copy of the allele A. At each unit of time,
one individual is chosen at random for reproduction and its clonal
offspring replaces another individual chosen at random to die. To
model natural selection, individuals with the advantageous allele
A are assumed to have relative fitness r > 1 as compared with those
with allele a of fitness 1.

Evolutionary dynamics has been classically studied for homo-
geneous populations, but it is a natural question to ask how
non-homogeneous structures affect this dynamics. In Lieberman
et al. (2005), a generalisation of the Moran process was introduced
by arranging the population on a directed graph, see also Nowak
(2006), Shakarian et al. (2012) and Shakarian et al. (2013). In this
model, each vertex represents an individual in the population, and
the offspring of each individual only replace direct successors, i.e.
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end-points of edges with origin in this vertex. The fitness of an
individual represents again its reproductive rate which determines
how often offspring takes over its neighbour vertices, although
these vertices do not have to be replaced in an equiprobable way.
The evolutionary process is described by the choice of stochastic
matrix W = (wij) where wij denotes the probability that individual
i places its offspring into vertex j. In fact, further generalisations can
be considered assuming that the probability above is proportional
to the product of a weight wij and the fitness of the individual i.
In this case, W does not need to be stochastic, but non-negative.
The fixation probability of the single individual i is the probabil-
ity that the progeny of i takes over the whole population. Several
interesting and important results are shown in Lieberman et al.
(2005).

• Different graph structures support different dynamical
behaviours amplifying or suppressing the reproductive advan-
tage of mutant individuals (with the advantageous allele A) over
the resident individuals (with the disadvantageous allele a).
• An evolutionary process on a weighted directed graph (G, W) is

equivalent to a Moran process (i.e. there is a fixation probability
well-defined for any individual, which coincides with the fix-
ation probability in a homogeneous population) if and only if
(G, W) is weight-balanced, i.e. for any vertex i the sum of the
weights of entering edges w−(i) =

∑N
j=1wji and that of leaving

edges w+(i) =
∑N

j=1wij are equal. This is called the Circulation
Theorem in Lieberman et al. (2005) and Nowak (2006).

As in the classical setting, mutant individuals will either become
extinct or take over the whole population, reaching one of the two
absorption states (extinction or fixation), when a finite population is
arranged on an undirected graph or on a strongly connected directed
graph (where two different vertices are always connected by an
edge-path). Even in the first case, the fixation probability depends
usually on the starting position of the mutant. The effect of this ini-
tial placement on mutant spread has been discussed in Broom et al.
(2009, 2011). In the present paper, we start by summarising some
fundamental ideas and results on evolutionary dynamics on graphs.
In this context, most work involves computing the (average) fixa-
tion probability, but doing so in general requires solving a system
of 2N linear equations. In the example of the star graph described in
Lieberman et al. (2005), like for other examples described in Broom
and Rychtář (2008), Hadjichrysanthou (2012) and Lieberman et al.
(2005), a high degree of symmetry reduces the size of the linear
system to a set of 2N equations, which becomes asymptotically
equivalent to a linear system with N equations. We revisit this
example that will be useful in addressing the study of complete
bipartite graphs. Another research direction has been to use Monte
Carlo techniques to implement numerical simulations, but often
limited to small graphs (Broom et al., 2009), small random mod-
ification of regular graphs (Rychtář and Stadler, 2008) or graphs
evolving under random drift (Shakarian and Roos, 2011).

Our aim is to show how to modify the stochastic process asso-
ciated with a weighted directed graph to simplify the evolutionary
process both analytically and numerically. Recall that an evolution-
ary process on a weighted directed graph (G, W) with N vertices is
a Markov chain with 2N states representing the vertex sets inha-
bited by mutant individuals and transition matrix P derived from
W. The non-zero entries of P can be used to see the state space
as a (weighted) directed graph. We call loop-erasing the loop sup-
pression in this graph S, avoiding to remain in the same state in
two consecutive steps and providing the Embedded Markov chain
(EMC) associated to the process. This technique is used here to com-
pute asymptotically the average fixation probability for complete
bipartite graphs, generalising the Star Theorem of Lieberman et al.

(2005), see also Banerjee (2012), Houchmandzadeh and Vallade
(2013) and Tan and Lu (2014). Expected time to absorption (fixation
or extinction) of this EMC has been studied for circular, complete
and star graphs in Hadjichrysanthou (2012). Here we compare
numerically the expected absorption time of both chains on some
kinds of complex networks. This method can be combined with
other approximation methods (like the FPRAS method described in
Díaz et al. (2012) for undirected graphs) to obtain a fast approxi-
mation scheme.

The paper is organised as follows. In Section 2, we review the
Moran model for homogeneous and non-homogeneous popula-
tions. In Section 3, we revisit the Star Theorem giving an alternative
proof of it. In Section 4, we briefly explain the machinery of the
loop-erasing method and we use this idea to describe the asymp-
totic behaviour of the fixation probability on the complete bipartite
graphs family. At the end, in Section 5, we include some numeri-
cal experiments to evaluate the performance of the Monte Carlo
method on both the standard and the loop-erased chains for differ-
ent complex networks.

2. Review of Moran process

The Moran process models random drift and natural selection
for finite homogeneous populations (Moran, 1958). As indicated
before, we consider a haploid population of N individuals having
only two possible alleles a and A for a given locus. At the beginning,
all individuals have the allele a. Then one resident individual is
chosen at random and replaced by a mutant having the neutral or
advantageous allele A. At successive steps, one randomly chosen
individual replicates with probability proportional to the fitness
r≥1 and its offspring replaces one individual randomly chosen to
be eliminated, see Fig. 1. Since the future state depends only on the
present state, the Moran process is a Markov chain Xn with state
spaceS = {0, . . ., N} representing the number of mutant individuals
with the allele A at the time step n. This is a stationary process
because the probability Pi,j = P[Xn+1 = j|Xn = i] to pass from i to
j mutant individuals does not depend on the time n. In fact, the
number of mutant individuals can change at most by one at each
step and hence the transition matrix P = (Pi,j) is a tridiagonal matrix
where Pi,j = 0 if j /= i−1, i, i + 1. As P0,0 = PN,N = 1, the states i = 0 and
i = N are absorbing, whereas the other states are transient.

The fixation probability of i mutant individuals

˚i = ˚i(r) = P[∃n ≥ 0 : Xn = N|X0 = i]

is the solution of the system of linear equations:

˚0 = 0

˚i = Pi,i−1˚i−1 + Pi,i˚i + Pi,i+1˚i+1

˚N = 1

(1)

where Pi,i = 1−Pi,i−1−Pi,i+1. In particular, the probability of a single
mutant to reach fixation ˚1 = ˚1(r) is usually referred to as the fixa-
tion probability in short. To solve (1), we define yi = ˚i−˚i−1 which
verifies

∑N
i=1yi = ˚N −˚0 = 1. Then, dividing each side of (1) by

Pi,i+1, we have yi+1 = � iyi where � i = Pi,i−1/Pi,i+1 is the death-birth rate.

It follows yi = ˚1
∏i−1

j=1�j , and hence the fixation probability is

˚1 =
1

1+∑N−1
i=1

∏i
j=1�j

(2)

see Karlin and Taylor (1975), Taylor et al. (2004) and Nowak et al.
(2004).

If neither of alleles a and A is advantageous reproductively, the
random drift phenomenon is modelled by the Moran process with
fitness r = 1, and (2) becomes ˚1 = 1/N. On the contrary, if mutant
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