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A B S T R A C T

Systems biology has to increasingly cope with large- and multi-scale biological systems. Many successful
in silico representations and simulations of various cellular modules proved mathematical modelling to
be an important tool in gaining a solid understanding of biological phenomena. However, models
spanning different functional layers (e.g. metabolism, signalling and gene regulation) are still scarce.
Consequently, model integration methods capable of fusing different types of biological networks and
various model formalisms become a key methodology to increase the scope of cellular processes covered
by mathematical models. Here we propose a new integration approach to couple logical models of
signalling or/and gene-regulatory networks with kinetic models of metabolic processes. The procedure
ends up with an integrated dynamic model of both layers relying on differential equations. The feasibility
of the approach is shown in an illustrative case study integrating a kinetic model of central metabolic
pathways in hepatocytes with a Boolean logical network depicting the hormonally induced signal
transduction and gene regulation events involved. In silico simulations demonstrate the integrated model
to qualitatively describe the physiological switch-like behaviour of hepatocytes in response to
nutritionally regulated changes in extracellular glucagon and insulin levels. A simulated failure mode
scenario addressing insulin resistance furthermore illustrates the pharmacological potential of a model
covering interactions between signalling, gene regulation and metabolism.

ã 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Model integration is emerging as a key methodology in modern
systems biology since mathematical modelling frameworks are
increasingly forced to cope with complex physiological and
phenotype-driven issues spanning a multitude of intra- and
intercellular organisation scales as well as environmental con-
ditions (Dada and Mendes, 2011; Goncalves et al., 2013; Karr et al.,
2012). According to a natural “intracellular task sharing” concept,
three major cellular process layers can be distinguished with each
featuring distinct physiological and functional characteristics:
(i) cell signalling is essentially mediated by interacting proteins
generating and transducing flows of information from the cell

surface to the nucleus; (ii) gene regulation, by contrast, comprises
transcriptional regulation of gene expression and post-transcrip-
tional modification mechanisms that further control and fine-tune
protein abundances, whereas (iii) metabolism comprises enzyme-
catalysed reactions, transforming substrates into biomass and
product metabolites. A cell’s phenotype results from the interplay
of all these processes described above – a fact stressing the layers’
interdependencies.

Integrative models linking the associated information and
material flows across all three cellular process layers will therefore
provide a more complete representation with increased predictive
power. Such models are, nevertheless, an exception as most
modelling studies in systems biology focus on single layers only.
Presumably, this could, on the one hand, be caused by the
complexity of integrated models implying a potentially high
number of parameters to be measured or estimated and, on the
other hand, by the large variety of different (quantitative vs.
qualitative) modelling concepts and implementation strategies

* Corresponding authors.
E-mail addresses: ryll@mpi-magdeburg.mpg.de (A. Ryll),

klamt@mpi-magdeburg.mpg.de (S. Klamt).

http://dx.doi.org/10.1016/j.biosystems.2014.07.002
0303-2647/ã 2014 Elsevier Ireland Ltd. All rights reserved.

BioSystems 124 (2014) 26–38

Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier .com/ locate /b iosyst ems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2014.07.002&domain=pdf
mailto:ryll@mpi-magdeburg.mpg.de
mailto:klamt@mpi-magdeburg.mpg.de
mailto:klamt@mpi-magdeburg.mpg.de
http://dx.doi.org/10.1016/j.biosystems.2014.07.002
http://dx.doi.org/10.1016/j.biosystems.2014.07.002
http://www.sciencedirect.com/science/journal/03032647
www.elsevier.com/locate/biosystems


independently developed and tailored to the nature of the
respective biological process under investigation (Goncalves
et al., 2013).

Adequate model integration, moreover, exceeds pure coupling,
as dimensions of the integrated model must not exceed a tractable
scale whereas individual sub-model features might be worth being
preserved in the course of model reduction. Karr et al. achieved a
recent breakthrough by assembling a whole-cell model of
Mycoplasma genitalium (Karr et al., 2012) which integrates
different biological processes by means of mathematical formal-
isms specifically adapted to each of the 28 sub-modules consid-
ered. The metabolism was, for instance, represented using a
genome-scale metabolic model and simulated via flux balance
analysis (FBA), whereas RNA and protein degradation were
modelled by Poisson equations. The sub-modules work autono-
mously for a small time scale (e.g. one second), subsequently
exchanging information according to predefined rules. Related
methods such as integrated (iFBA) (Covert et al., 2008) or
integrated dynamic FBA (idFBA) (Lee et al., 2008) have been
described within the context of linking metabolic models with
gene regulatory networks. Simeonidis et al. (Simeonidis et al.,
2013) presented another FBA-based concept with focus on

Abbreviations and symbols

AKT Protein kinase B (also PKB)
cAMP Cyclic adenosine monophosphate
CBP CREB binding protein
ChREBP Carbohydrate response element binding protein
CREB cAMP responsive element binding protein
ENO1 Enolase 1
F-1,6-P2 Fructose-1,6-bisphosphate
F-2,6-P2 Fructose-2,6-bisphosphate
G6P Glucose-6-phosphate
GSK3 Glycogen synthase kinase 3
GYS2 Glycogen synthase 2
HNF4a Hepatocyte nuclear factor 4 a
IR Insulin receptor
IRS1 Insulin receptor substrate 1
ITT Incomplete truth table (operator)
LIH Logical interaction hypergraph
LSS Logical steady-state
LXRa Liver X receptor a (also NR1H3)
ODE Ordinary differential equation
PDHK2 Pyruvate dehydrogenase kinase isoform 2
PDHP2 Pyruvate dehydrogenase phosphatase 2
PDK1 3-Phosphoinositide-dependent kinase 1
PFK1 Phosphofructokinase 1 (also PFKL)
PFK2 Phosphofructokinase 2
PKA Protein kinase A
PKLR Pyruvate kinase (liver-type; also LPK)
PP2A Protein phosphatase 2A
PPARa Peroxisome proliferator-activated receptor a (also

NR1C1)
SOP Sum of products (notation)
SREBP1c Sterol-regulatory-element-binding protein 1c
TORC2 Transducer of regulated CREB protein 2 (also

CRTC2)
TRB3 Tribbles homolog 3 (also neuronal cell death-

inducible putative kinase / NIPK)
V Index set of all species in the integrated model

Metabolic model context
c Vector of metabolite concentrations [mM] (cf. Step 1)
cnorm Normalised metabolite concentration [n.u.] (cf. Eq. (4)/

Step 4)
e Total number of metabolites (cf. Step 1)
K Normalisation parameter defining normalisation

threshold [mM] (cf. Eq. (4)/Step 4)
l Total number of metabolites in subset MS (cf. Step 1)
M Index set of metabolites (M � V; cf. Step 1)
MS Index subset of metabolites regulating signalling

species (MS = SM = S
T
M; cf. Step 1)

N Stoichiometric matrix (cf. Step 1)
N Normalisation parameter defining normalisation

sharpness [n.u.] (cf. Eq. (4)/Step 4)
Q Metabolic network (cf. Step 1)
p Total number of reactions (cf. Step 1)
q Total number of reactions in subset RS (cf. Step 1)
R Index set of reactions (cf. Step 1)
RS Index subset of reactions involving enzymes under

signalling control (cf. Step 1)
r Vector of kinetic rates [mM/h] (cf. Step 1)
t Time [h] (cf. Step 1)

Signalling model context
B Set of Boolean functions (cf. Step 2)
~B Set of continuous function homologues (cf. Step 3)

b Boolean function (cf. Eq. (2)/Step 2)
~b Continuous function homologue of a Boolean function (cf.

Eq. (3)/Step 3)
d Confidence level of a logical transition (cf. Step 2 and

Table S6)
j Running index for signalling effectors affecting species i

(j 2 [0;zi]); see Step 3 and Supplementary Table S4)
k Transformation parameter defining the normalised

signalling species activation threshold [n.u.] (cf. Step 3)
L Logical network (cf. Step 2)
~L Transformed logical network (cf. Step 3)
n Transformation parameter defining the normalised

transformation sharpness [n.u.] (cf. Step 3)
S Index set of signalling species (S � V; cf. Step 2)
SA Index subset of signalling species reflecting effector

activation levels
SE Index subset of signalling species reflecting signalling

outputs to metabolism and therefore metabolic key-
enzyme activation or gene expression levels (SE� SA

S
SG) with SE

T
SM = ; (cf. Step 2)

SG Index subset of signalling species reflecting effector gene
expression levels (SG� S; cf. Step 2)

SH Index subset of signalling species reflecting levels of
external hormonal inputs to signalling (SH� S; cf. Step 2)

SM Index subset of signalling species reflecting levels of
metabolic inputs to signalling (SM = MS = S \ M; cf. Step 2)

SP Index subset of signalling species reflecting effector
modification levels (SP� S; cf. Step 2)

SU Index subset of signalling species reflecting basal effector
activity or gene expression level (SU� S; cf. Step 2)

w Total number of signalling species (cf. Step 2)
~x Vector of continuous state variables (defining the

normalised species activation levels) [n.u.] (cf. Eq. (3)/
Step 3)

y Relevance parameter of a logical transition (cf. Table S6)
z Total number of upstream effector species (cf. Eqs. (2)

and (3)/Steps 2 and 3)
t Time constant (defining signalling species response rate)

[h] (cf. Eq. (3)/Step 3)
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