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a  b  s  t  r  a  c  t

Recently,  it  has  become  possible  to more  precisely  analyze  flocking  behavior.  Such  research  has  prompted
a  reconsideration  of  the  notion  of neighborhoods  in the theoretical  model.  Flocking  based  on  topological
distance  is  one  such  result.  In  a topological  flocking  model,  a  bird does  not  interact  with  its  neighbors  on
the basis  of a fixed-size  neighborhood  (i.e.,  on  the  basis  of  metric  distance),  but instead  interacts  with
its  nearest  seven  neighbors.  Cavagna  et  al.,  moreover,  found  a new  phenomenon  in  flocks  that  can  be
explained  by  neither  metric  distance  nor  topological  distance:  they  found  that  correlated  domains  in a
flock  were  larger  than  the  metric  and  topological  distance  and  that these  domains  were  proportional  to
the  total  flock  size.  However,  the role  of  scale-free  correlation  is  still  unclear.  In  a previous  study,  we  con-
structed  a metric-topological  interaction  model  on three-dimensional  spaces  and  showed  that  this  model
exhibited  scale-free  correlation.  In this  study,  we  found  that  scale-free  correlation  in  a  two-dimensional
flock  was  more  robust  than  in  a  three-dimensional  flock  for  the threshold  parameter.  Furthermore,  we
also found  a  qualitative  difference  in  behavior  from  using  the  fluctuation  coherence,  which  we observed
on  three-dimensional  flocking  behavior.  Our  study  suggests  that two-dimensional  flocks  try  to maintain
a balance  between  the flock  size  and  flock  mobility  by  breaking  into  several  smaller  flocks.

© 2014 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

In models of flocking, it is generally assumed that individuals,
called ‘agents’ generally, interact with those inside a given neigh-
borhood. One notion used to define such a neighborhood is metric
distance: that is, an agent interacts with exactly those individuals
within a particular distance of the agent. The prototype of the met-
ric distance flocking model was proposed by Reynolds (1987). In
his model, which was developed to explain various formations of
flocks, each agent has a fixed interaction length and the interaction
neighborhood is divided into three zones: the repulsion zone, from
whose members the agent heads away; the alignment zone, whose
members’ heading the agent tries to match; and the attraction zone,
toward whose members the agent heads. Vicsek’s model, the self-
propelled particle (SPP) system, can be considered as an abstraction
of Reynolds’s model (Czirok and Vicsek, 2006; Szabó et al., 2009;
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Vicsek et al., 1995). In contrast to Reynolds’s model, Vicsek’s model
has only one area (the alignment zone) but includes external noise.
The SPP model exhibits an alignment phase transition as the noise
parameter or population density is varied. Although the SPP model
is typically used to study physical phenomena, such as statistical
mechanics and hydrodynamics (Buhl et al., 2006), density depend-
ence of the phase transition has also been reported in studies of
locusts (Parrish, 1999) and schools of fish (Bertin et al., 2006).
Despite their focuses on different types of collective phenomena,
these models are both based on the concept that each individ-
ual unit (particle, bird, fish, etc.) interacts locally in a given space
and that global properties spontaneously emerge from these local
interactions, rather than from a central control.

Collective behavior has been widely accepted as a good example
of self-organization (Goldstone and Gureckis, 2009; Moussaid et al.,
2009; Sumpter, 2006). Indeed, models based on metric distance
have been successfully used to explain various forms of collec-
tive behavior. Couzin’s famous simulation, for instance, not only
showed various formations in schools of fish, but also the possibil-
ity of collective memory (effects from past formations) in schools
of fish (Couzin et al., 2002). The virtue of this kind of model is that
it represents the relationship between the parts and the whole
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system in an abstract way. Individuals interact and collective
behavior emerges from the whole group. Although some models
used for solving the equations governing agent motion also rep-
resent the type of formation (Dossetti et al., 2009; Strefler et al.,
2008), this kind of method obscures the issue of the cognitive
perspective of an agent’s neighbors. Therefore, the metric dis-
tance model has been considered sufficient for modeling collective
behavior sufficiently well until recently (Grégoire et al., 2001a,b;
Grégoire and Chaté, 2004; Hemelrijk and Kunz, 2005; Hemelrijk
and Hildenbrandt, 2008, 2011; Hildenbrandt et al., 2010).

Ballerini et al. (2008a,b) have empirically shown that birds do
not interact with their neighbors according to metric distance but
instead employ topological distance. The meaning of topological
distance in that instance is that a bird interacts with its nearest
seven neighbors, no matter how far away they are. The results of
that research can be compared with other empirical results (fishes,
birds, and elephants, for example, can count up to three or four
(Agrillo et al., 2008, 2009; Feigenson et al., 2004; Hunt et al., 2008;
Sugimoto et al., 2009)) and support the “magic number seven”
hypothesis, which states that the limit of the cognition of an indi-
vidual is concentrated around the number seven, plus or minus two
(Miller, 1956). However, there is a difference between counting
neighbors and keeping track of certain neighbors. These empiri-
cal observations suggest that limitations on animal cognition are
an important factor in flocking behavior. A model based on metric
distance, for instance, may  ignore the limits on animal cognition
because the abstract agent can interact with all nearby neighbors,
no matter how many. Additionally, Ballerini et al. (2008a,b) simu-
lated flocks formed under these two types of distance and suggested
that a flock formed by topological distance is more robust to preda-
tor attacks than a flock formed by metric distance.

The problem with using topological distance, however, is the
limit on information transfer. If each bird interacts with only seven
neighbors, the speed and accuracy of the information transfer will
be degraded for larger flocks. To move as a large flock, each agent
in the flock must share information that is as accurate as possible
across a domain whose typical size exceeds the allowed topological
distance. Recently, Cavagna et al. have suggested the existence of a
correlated domain with respect to fluctuation vectors in real flocks
(Bialek et al., 2012; Cavagna et al., 2010). (In their model, an indi-
vidual’s fluctuation vector is determined by subtracting the average
velocity vector of the flock from the individual’s velocity vector.)
Furthermore, they found that the size of the correlated domain was
proportional to the flock size (Bialek et al., 2012; Cavagna et al.,
2010), encompassing nearly 30% of the whole flock. It should be
noted that the size of this correlated domain is much larger than
both the metric and topological interaction distances. This sug-
gests the occurrence of indirect information transfer, mediated by
direct interactions between individuals who are metric or topolog-
ical neighbors. By sharing information across a large area, the flock
easily responds to external perturbation.

This discovery of a scale-free correlation (SFC) also suggests the
dynamical nature of information sharing in a flock. The correlated
subdomain can contract and expand with changing motion and
flock shape because correlated domains are proportional to flock
size. This raises the question: How does each bird evaluate the size
and shape of the flock? It is not obvious that direct interaction leads
to information sharing across large areas. Cavagna et al. explained
this in the SPP model, which can generate SFC if an appropriate
noise level is given. Generally, the correlated domain is larger for
lower external noise. To generate SFC, each individual in the flock
should have the ability to tune the noise (or degrees of freedom).
In this study, the main aim is to consider how to reach and main-
tain the proper level of noise under various conditions. In other
words, each individual should be thought of as actively adjusting
its degrees of freedom (or noise) under uncertain conditions.

The role fluctuational coherence, which is observed with scale-
free correlation, in collective behaviors is still unclear. For example,
it is assumed that flocks of birds have the highest sensitivity to
external perturbations when the flock is at a critical point. A large
correlation domain inside of the flock allows easier avoidance
of predator attacks at the group level. However, this argument
holds only when each agent can move in three dimensions. How
about two-dimensional cases? The situation is radically different
when each agent is restricted to a plane, because predator attacks
can come from the sky; for example, Asian soldier crabs (Mic-
tyris brevidactylus) are preyed upon by birds such as sandpipers
(Scolopacidae) (Takeda and Murai, 2004). When flocking behav-
iors are restricted to a plane, it is hard to avoid an out-of-plane
predator attack by maintaining a single collective. With out-of-
plane predators, the risk is not mitigated when agents maintain
one collective. Therefore, agents limited to a plane need a differ-
ent method of structuring correlation domains than agents with
three-dimensional movement if SCF is to be achieved for the two-
dimensional case.

In a previous study, we  proposed a model that takes account
of both the topological distance and the metric distance (Niizato
and Gunji, 2011, 2012). By using both models for interactions, we
express an ambiguity in interactions from the cognitive perspec-
tive: cognition as a class (this corresponds to the metric distance)
and cognition as a collection (this corresponds to the topological
distance). These notions will be discussed in the next section (or
see Niizato and Gunji, 2011, 2012). Although we  have used the
metric-topological interaction (MTI) model in three dimensions
to show the existence of SFC and some other nontrivial proper-
ties (Niizato and Gunji, 2012), it is still uncertain whether this
model also holds in two dimensions. To address this, we  first
show that this model has a correlation domain with fluctuations,
and that this model closely simulates real flocks and exhibits SFC
for a wide range of parameter values. Then, we examine how
this SFC is expressed when flocking behaviors are restricted to
a plane. As a result, we find that a power law relation between
the flexibility of flock movement and flock size. Our  study sug-
gests that SFC in two  dimensions aids optimal sizing by adjusting
between speed of information transfer and flexible movement as
one flock.

2. Metric-topological interaction model

The MTI  model was  proposed to close the gap between the met-
ric and topological distance models (Niizato and Gunji, 2012). The
motivation for the MTI  model is as follows. Topological distance
is implicitly based on metric distance because an agent employs
metric distance to recognize its nearest neighbors. Additionally,
the notion of metric interaction is also an implicit assumption of
topological interaction because the radius of each neighborhood
has to be adjusted according to the number of agents present in
the neighborhood. We  re-interpreted these two  neighborhoods as
corresponding to notions of cognition as a class and cognition as a
collection. To distinguish these notions, we can consider the cog-
nitive context in which each agent interprets collective behavior.
Although a population of individuals is understood and averaged
by agents (cognition as a collection), these individuals are col-
lected in terms of distance, which is evaluated by role (cognition
as a class). Thus, one interpretation is that cognition as a class
corresponds to metric distance interactions and cognition as a
collection corresponds to topological distance interactions. These
notions are not unnatural. For example, fishes may  have two sys-
tems to recognize conspecifics. One is the system that distinguishes
small numbers of objects (Agrillo et al., 2008), and the other is
the system that distinguishes numerical ratios, such as 1:2 or 2:3
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