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a  b  s  t  r  a  c  t

The  emergence  of  spatiotemporal  patterns  in  the distribution  of  species  is  one  of the  most  striking
phenomena  in  ecology  and  nonlinear  science.  Since  it is  known  that  spatial  inhomogeneities  can  sig-
nificantly  affect  the  dynamics  of  ecological  populations,  in  the  present  paper  we  investigate  the  impact
of  environmental  variability  on  the  formation  of  patterns  in  a  spatially  extended  predator–prey  model.
In  particular,  we  utilize  a predator–prey  system  with  a Holling  III  functional  response  and  introduce  ran-
dom spatial  variations  of  the  kinetic  parameter  signifying  the intrinsic  growth  rate  of  the  prey,  reflecting
the  impact  of  a  heterogeneous  environment.  Our results  reveal  that  in  the  proximity  of  the  Hopf  bifur-
cation  environmental  variability  is able  to  provoke  pattern  formation,  whereby  the  coherence  of  the
patterns  exhibits  a resonance-like  dependence  on the  variability  strength.  Furthermore,  we  show  that
the  phenomenon  can only  be observed  if the spatial  heterogeneities  exhibit  large enough  regions  with
high  growth  rates  of  the prey.  Our findings  thus  indicate  that variability  could  be  an  essential  pattern
formation  mechanism  of  the populations.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Ecological communities constitute complex dynamical sys-
tems governed by interactions of individual organisms with each
other and with the environment. Since the publication of the
paradigmatic Lotka–Volterra equations researchers from various
disciplines are devoting a great deal of attention to studies of pop-
ulation dynamics models. The main objective of those studies is
to provide a comprehensive understanding of the co-evolution of
competitory species and to determine the factors which govern the
distribution of populations and the structure of communities. It is
known that population densities of some species vary not only peri-
odically over time, but also in spatial dispersion (Liu et al., 2008;
Medvinsky et al., 2002; Sieber et al., 2010; Turchin, 2003), which
is an important mechanism for the appearance of complex spatio-
temporal dynamics in an ecosystem (Yoshida, 2005). Discovering
how the population numbers are being changed and which mech-
anisms cause the observed patterns is a serious a challenge to
researchers in the natural sciences. Mathematical modeling has
turned out to be one of the most useful tools, whose main goal
is not just limited to the improvement of the understanding of
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the mechanisms leading to complex spatiotemporal dynamics.
Namely, theoretical studies may  also provide valuable insight into
the stability of ecosystems, for example in the context of human’s
interference into the environment (Malchow et al., 2008).

Predator–prey systems where spatial patterns form sponta-
neously, purely from the dynamics of the system, have led to the
characterization of two  basic types of symmetry-breaking bifur-
cations – Hopf and Turing bifurcation, which are responsible for
the emergence of spatiotemporal patterns. Conditions for Hopf
and Turing instabilities were derived in several studies (Baurmann
et al., 2007; Wang et al., 2007; Yang et al., 2002). An important
component of the predator–prey system is the predator’s func-
tional response, i.e. the prey consumption rate by an average single
predator. In general, functional responses can be classified as prey
dependent (Sun et al., 2010; Wang et al., 2008), predator depend-
ent (Wang et al., 2007) or multi-species dependent (Abrams and
Ginzburg, 2000). Furthermore, Wang et al. (2008) have shown that
special initial conditions can affect the nature of emerging spatial
patterns. Several studies gave emphasis to additional aspects of
predator–prey dynamics, such as predator cannibalism (Sun et al.,
2009b), the provision of alternative food to predators (Kar and
Ghosh, 2012) or the role of the Allee effect (Allee, 1938; Dennis,
1989; Gyllenberg et al., 1999; Petrovskii et al., 2002). For instance,
Wang et al. (2011a) have studied the impact of the Allee effect on
the spatial structure and temporal dynamics of an epidemic inva-
sion. Another interesting report was  reported by Su and Hui (2011),
who have studied the complex dynamics in eco-epidemiological
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systems and the impact of predation on the epidemic transmission
in spatially structured prey populations.

In ecological systems, many stochastic factors can have a signifi-
cant impact on dynamics of interacting species as well as on pattern
formation of the populations (Malchow et al., 2002; Serizawa et al.,
2009; Sieber et al., 2010). For example, it has been shown that noise
can trigger regime shifts in an aquatic model (Serizawa et al., 2009)
or prevent the onset of chaos in spatiotemporal population dynam-
ics (Petrovskii et al., 2010). Remarkably thought, it is nowadays a
well known fact that in certain nonlinear systems noise has orga-
nizing rather than disruptive effects. Perhaps the most prominent
phenomena related to this apparently paradoxical fact are stochas-
tic (Gammaitoni et al., 1998) and coherence resonance (Pikovsky
and Kurths, 1997) and the occurrence of both has already been
reported in various population dynamics models (Borgogno et al.,
2012; Rozenfeld et al., 2001; Sieber et al., 2007). Of particular inter-
est are the studies investigating the role of noise in systems with
spatial degrees of freedom. The manifestation of noise-induced
ordered phases, patterns and traveling waves have been witnessed
in various physical, chemical, biological and artificial setups (for a
comprehensive review see (Sagués et al., 2007)). Along these lines
several groups devoted plenty of attention to the impact of noise in
spatially extended ecologically relevant models (Li and Jin, 2012;
Liu et al., 2008; Mobilia et al., 2007; Sun et al., 2009a; Wang et al.,
2011b). Apart from random fluctuations, ecological parameters are
exposed to seasonal variations such as changes in climate or pho-
toperiods as well (Steffen et al., 1997). Accordingly, a lot of interest
has been given to the analysis of a combined effect of noise and
external periodic forcing. In particular, recent studies reveal that
in this manner very complex spatiotemporal behavior can occur,
such as resonant patterns or frequency-locking phenomena (Liu
et al., 2008; Rao et al., 2009; Jiang et al., 2009; Sun et al., 2010).

Spatial heterogeneity of the environment has long been recog-
nized as a very important issue in ecological dynamics (Griffin et al.,
2009; Lander et al., 2009). It has been shown that the spatial struc-
ture affects the stability of an ecosystem (Poggiale et al., 2008),
enhance the species fitness (Dobramysl and Täuber, 2008), or even
contribute to species diversity (Griffin et al., 2009). Noteworthy, it
has been shown that pattern formation in spatially extended non-
linear systems can also be provoked by spatial variability, i.e. static
disorder. Till today, the phenomenon has been observed in a net
of subexcitable oscillators (Glatt et al., 2007), in an ensemble of
diffusively coupled cells (Sailer et al., 2006; Gosak, 2009) and in
excitable neuronal networks (Sun and Lu, 2010). In all those studies
the most coherent patterns were attained for intermediate values
of parametric variability, thereby signifying the diversity-induced
resonance phenomenon (Tessone et al., 2006). In the present article
we aim to extend the concept of variability-induced pattern for-
mation to a spatially extended predator prey model. We  introduce
random spatial variations in reaction rates that describe the pop-
ulation kinetics, which can be interpreted as direct environmental
influences on the species reproduction rate, such as local variations
of pollution, available resources, temperature, habitat landscape,
etc. (Medvinsky et al., 2002). Our findings reveal that intermedi-
ate levels environmental variability can induce coherent traveling
waves on the spatial domain in a resonant way. We  additionally
examine the relation between the characteristics of environmental
variability and its ability to provoke spatiotemporal patterns.

2. Mathematical model

The prey-predator spatial dynamics of prey (z) and predator
(y) populations is studied by using the nondimensional mathe-
matical model determined by theoretical framework of Sun et al.
(2010). We  focus on a predator–prey system with prey dependent

Holling III functional response (Chaudhuri, 1988). Elements are
coupled by diffusion, and modeled in two  spatial dimensions by
reaction–diffusion equations. The spatially extended model is
written as:
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The Laplacian operator is integrated into the numerical scheme
via a five-point finite-difference formula (Barkley, 1991). D1 and
D2 are the diffusion coefficients of phytoplankton and zooplankton,
respectively. The term ˛i,jzi,j in Eq. (1a) introduces the impact of the
variability of the natural environment. In particular, ˛i,j is related
to the intrinsic growth rate of the phytoplankton we  assume that
values of the parameter ˛i,j are defined as follows:

˛i,j = ˛0 + ��i,j − 〈�i,j〉, (2)

where ˛0 is the value of ˛i,j when � = 0. (Under there conditions all
subjects are just below the Hopf bifurcation). � defines the inten-
sity of environmental fluctuations and �i,j are correlated random
numbers accorded with 2-dimensional Perlin noise (Perlin, 1985).
Perlin noise is the sum of several interpolated noise functions with
various frequencies (b) and amplitudes (1/a). The generation of each
noise function was  based on m × m random numbers arranged on a
square lattice, cubic interpolation between them and selected val-
ues of bi and 1/ai, where i is the ith noise function being added. We
subtract the term 〈�i,j〉 in Eq. (2), in order to achieve that on average
˛i,j is always below the Hopf bifurcation (〈  ̨ 〉 = ˛0). The generated
spatial patterns are smooth and hence provide a pertinent descrip-
tion of the environmental variability, where sharp transitions and
discontinuities are not expected.

Typical two  dimensional spatial distributions of ˛i,j are obtained
for three different values of m are shown in Fig. 1. We  can observe
that the parameter m determinates the size of the patches with high
or low growth rate of the prey. In particular, as m is increased, the
size of the patches decreases. When m → L, the spatial variations of
˛i,j can be regarded as quenched uncorrelated random variables.

In our numerical simulations we employed zero-flux bound-
ary conditions with a system size of L × L space units, time
step ��  = 0.01 and space step �x  = �y  = 1. The parameters used
throughout the whole study were:  ̌ = 1.25, � = 0.8, � = 0.5, D1 = 0.05,
D2 = 1, L = 400 and m = 12, unless stated otherwise. The system is
integrated initially from the homogeneous state signifying the inte-
rior equilibrium point (z∗

i,j
, y∗

i,j
), where (Sun et al., 2010)

z∗
i,j =

√
�(� − �)

� − �
, (3a)

y∗
i,j =

�(  ̨ − z∗
i,j

)

ˇz∗
i,j

(� − �)
. (3b)

Furthermore, by the analysis of the emergent spatial patterns
a long enough transient time has been considered in order to
ensure that the system is in its final dynamical state. In particu-
lar, the quantification of the spatial dynamics took place between
5000 < t ≤ 10,000.

3. Results

Hopf instability for individual oscillators occurs and spatially
homogeneous oscillation comes up, when the parameter  ̨ is above
this critical value ˛H ≈ 6.45 (Sun et al., 2010). We  want to achieve
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