
BioSystems 114 (2013) 186– 190

Contents lists available at ScienceDirect

BioSystems

journa l h om epa ge: www.elsev ier .com/ locate /b iosystems

Periodic  coupling  strength-dependent  multiple  coherence  resonance
by  time  delay  in  Newman–Watts  neuronal  networks

Yanan  Wu,  Yubing  Gong ∗, Bo  Xu
School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 21 September 2011
Received in revised form 7 July 2013
Accepted 9 September 2013

PACS:
87.18.Tt
87.19.lj
87.19.ln

Keywords:
Neuron
Newman–Watts network
Time-periodic coupling strength
Time delay
Coherence resonance

a  b  s  t  r  a  c  t

Recently,  multiple  coherence  resonance  induced  by  time  delay  has  been  observed  in neuronal  networks
with  constant  coupling  strength.  In  this  paper,  by employing  Newman–Watts  Hodgkin–Huxley  neuron
networks  with time-periodic  coupling  strength,  we  study  how  the  temporal  coherence  of  spiking  behavior
and coherence  resonance  by time  delay  change  when  the  frequency  of periodic  coupling  strength  is
varied.  It is  found  that  delay  induced  coherence  resonance  is dependent  on  periodic  coupling  strength
and  increases  when  the  frequency  of  periodic  coupling  strength  increases.  Periodic  coupling  strength  can
also induce  multiple  coherence  resonance,  and  the  coherence  resonance  occurs  when  the frequency  of
periodic  coupling  strength  is  approximately  multiple  of  the spiking  frequency.  These  results  show  that  for
periodic  coupling  strength  time  delay  can  more  frequently  optimize  the  temporal  coherence  of  spiking
activity,  and  periodic  coupling  strength  can repetitively  optimize  the  temporal  coherence  of  spiking
activity  as  well.  Frequency  locking  may  be the  mechanism  for multiple  coherence  resonance  induced
by  periodic  coupling  strength.  These  findings  imply  that  periodic  coupling  strength  is  more  efficient
for  enhancing  the  temporal  coherence  of spiking  activity  of  neuronal  networks,  and  thus  it  could  play
a  more  important  role  in improving  the  time  precision  of  information  processing  and  transmission  in
neural  networks.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Neurons are coupled to each other via synapses and constitute
neural networks, and information transmission in neural systems
is fulfilled by coupled neurons and neural networks. Studies have
shown that neural networks have characters of scale-free (Barabási
and Albert, 1999; Eguíluz et al., 2005) and small-world (Watts
and Strogatz, 1998; Newman and Watts, 1999a, 1999b; Newman,
2000) topology. Watts–Strogatz and Newman–Watts small-world
networks are often studied since they can better mimic  most
of real networks. In Newman–Watts model, long-range random
shortcuts are added between pairs of non-adjacent-vertices chosen
at random, while maintaining the original edges of the underly-
ing ring, and thus the new long-range edges increase the total
number of connections from that of the original network. Since
Newman–Watts topology characterizes the information transmis-
sion among neurons, it is often employed to study the firing
dynamics of neuronal networks.

Neurons are noisy elements, and noise in neurons arises from
many different sources, such as the quasi-random release of neu-
rotransmitters by the synapses and random synaptic input from
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other neurons and the random switching of ion channels. In the past
decades, stochastic resonance (SR) and coherence resonance (CR)
have been extensively studied in neuronal systems. In recent years,
the focus of this subject has switch to the temporal and spatial SR
and CR in excitable media and neuronal networks, and many novel
phenomena have been found, such as CR due to channel block-
ing on Newman–Watts networks of Hodgkin–Huxley (HH) neurons
(Ozer et al., 2009a), spatial coherence resonance on diffusive and
small-world networks of HH neurons (Sun et al., 2008) and on
delayed HH neuronal networks (Wang et al., 2010a), spatial deco-
herence induced by small-world connectivity in excitable media
(Perc, 2005), small-world connectivity enhanced noise-induced
temporal and spatial order in neural media (Perc, 2007), and SR
on Newman–Watts networks of HH neurons with local periodic
driving (Ozer et al., 2009b).

In neural networks, information transmission delay is inher-
ent because of both the finite speed at which action potentials
propagate across neuron axons and time lapses occurring in both
dendritic and synaptic processing (Kandel et al., 1991). Studies
have shown that time delay and neuronal coupling have significant
effects on the firing dynamics of neural networks. For instance,
time delay can facilitate and improve neuronal synchronization
(Dhamala et al., 2004; Rossoni et al., 2005; Burić et al., 2008) and
induce various spatiotemporal patterns (Roxin et al., 2005) as well
as enhance the coherence of spiral waves in noisy HH neuronal
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networks (Wang et al., 2008a). It can also induce multiple SR, CR and
synchronization transitions in various neuronal networks (Wang
et al., 2008b, 2009a, 2009b, 2010b, 2011; Gong et al., 2010, 2011;
Hao et al., 2010, 2011a, 2011b; Gan et al., 2010). Neuronal coupling
can also induce SR, CR, synchronization and firing transition in the
firing activity of coupled neurons and excitable systems (Hu and
Zhou, 2000; Wang et al., 2000; Zhou et al., 2001, 2003; Li and Li,
2006; Li and Lang, 2006; Li and Liu, 2006). These results show that
time delay and neuronal coupling have many positive roles in the
information processing and transmission in neural systems.

However, constant coupling strength has always been employed
in the above studies, which is obviously far from real neural
networks. It has been shown that the synapses of a neuron are
plastic and neuronal coupling is always changing with time such
that the neurons can adjust their firing behaviors to reach new
coherent and synchronized performance. The coupling of neurons
comprises electrical (gap-junction) and chemical synapses. Gap-
junction coupling represents the direct information transmission
between two neurons, and the coupling strength may  symbol-
ize the amount of transmitted information. Consequently, neural
networks with either gap-junction or chemical synapses are plas-
tic as well. Also, coupling strength is finite, which requires that
coupling strength change nonlinearly. For simplicity, the time-
varying coupling strength can be assumed to be periodic in time.
Very recently, Birzu et al. have studied the effect of time-periodic
coupling strength on the firing dynamics of a globally coupled
array of Fitzhugh–Nagumo oscillators, and rich oscillatory and res-
onant behavior have been observed when time-periodic coupling
strength frequency is varied (Birzu and Krischer, 2010).

In this paper, we study the temporal coherence of spiking
activity in delayed Newman–Watts HH neuron networks with
time-periodic coupling strength. Our goal is to investigate how time
delay induced CR changes when the frequency of periodic coupling
strength is varied, and how periodic coupling strength influences
the temporal coherence of spiking activity and induces CR in the
neuronal networks.

2. Model and equations

According to the HH neuron model, the dynamics of the mem-
brane potential V (t) can be described by

C
dV

dt
= −gNam3h(V − VNa) − gK n4(V − VK ) − gL(V − VL) + �(t)

(1a)

and the stochastic gating variables m,  h, and n obey the following
Langevin equations:

ṁ = ˛m(V)(1 − m) − ˇm(V)m, (1b)

ḣ = ˛h(V)(1 − h) − ˇh(V)h, (1c)

ṅ = ˛n(V)(1 − n) − ˇn(V)n, (1d)

with voltage-dependent opening–closing transition rates given by

˛m(V) = 0.1(V + 40)
1 − exp[−(V + 40)/10]

(2a)

ˇm(V) = 4 exp[−(V + 65)/18] (2b)

˛h(V) = 0.07 exp[−(V + 65)/20] (2c)

ˇh(V) = 1
1 + exp[−(V + 35)/10]

(2d)

˛n(V) = 0.01(V + 55)
1 − exp[−(V + 55)/10]

(2e)

ˇn(V) = 0.125 exp[−(V + 65/80)] (2f)

where C = 1 �F/cm2, gNa = 120 mS/cm2, gK = 36 mS/cm2, and gL = 0.3
mS/cm2, VNa = 50 mV,  VK = −77 mV,  and VL = −54.4 mV. �(t) is a
Gaussian white noise with vanishing mean and autocorrelation
function 〈�(t)�(t′) 〉 = Dı(t − t′), and D = 0.05 is noise intensity.

According to Newman–Watts topology (Watts and Strogatz,
1998; Newman and Watts, 1999a, 1999b; Newman, 2000), the
present Newman–Watts HH neuron network starts with a regular
ring comprising N = 60 identical neurons, with each neuron hav-
ing two nearest neighbors (k = 2). Then links are randomly added
between non-nearest vertices. In the limit case that all neurons cou-
pled to each other, the network contains N(N − 1)/2 edges. Using M
to denote the number of added shortcuts, the fraction of the short-
cuts is given by p = M/[N(N − 1)/2], which is used to characterize the
randomness of the network topology.

The dynamics of the HH neuron networks can be written as

C
dVi

dt
= −gNam3

i hi(Vi − VNa) − gK n4
i (Vi − VK ) − gL(Vi − VL)

+
∑

j

εij(Vj(t − �) − Vi) + �i(t) (3)

dxi

dt
= ˛xi

(Vi)(1 − xi) − ˇxi
(Vi)xi, (x = m, h, n) (4)

where � is time delay (in unit of ms),
∑

jεij[Vj(t − �) − Vi] is the cou-
pling term, Vi is the membrane potential of the ith neuron at time
t, Vj(t − �) is the membrane potential of jth neuron at earlier time
t − �, 1 ≤ (i, j) ≤ N, N is the number of neurons, and the summation
takes over all neurons; εij is a coupling constant between the two
neurons i and j, which is determined by the coupling pattern of the
system and is identical for any two neurons. εij = ε if neurons i and
j are connected; ε = 0 otherwise. Here, we  employ time-periodic
coupling strength (TPCS) in the form as (Birzu and Krischer, 2010):

ε = ε0(1 + cos ωt)  (5)

where ε0 is the amplitude and ω is the frequency of TPCS.
Coefficient of variation �i is used to quantify the temporal coher-

ence of the spiking behavior of a neuron on the network, which is
defined as

�i = 〈T〉√
〈T2〉 − 〈T〉2

(6)

and the average of �i over all neurons is

� = 1
N

[
N∑

i=1

�i

]
(7)

where T is the inter-spike interval in the time series of Vi(t), and
〈T〉 = (1/M)

∑M−1
k=0 (tk+1 − tk) and 〈T2〉 = (1/M)

∑M−1
k=0 (tk+1 − tk)2

are the mean and mean-squared values, respectively, and M is the
number of spikes. The threshold value for a spike is −20 mV.  Larger
�i or � denotes more ordered spiking behavior.

Numerical integration of Eqs. (3)–(5) is carried out by using
explicit Euler method with time step of 0.001 ms.  Periodic bound-
ary conditions are employed and the parameter values for all the
neurons are identical except for distinct initial values of potential
Vi0 and the noise terms �i(t) for each neuron. In each calculation, the
initial values of the membrane potentials of all neurons are chosen
randomly.
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