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a  b  s  t  r  a  c  t

Kinetic  Monte  Carlo  (KMC)  simulation  is employed  to  represent  the photochemical  reactions  involved
in  the  initial  phases  of chlorophyll  fluorescence  (ChlF)  emission  from  photosystem  II  (PSII).  Comparison
with  a differential  equation  representation  reveals  similarities  and  differences.  Both  KMC  and  differential
equation  models  can describe  the  kinetic  variations  and  show  the  main  characteristics  of ChlF  emis-
sion.  Differential  equation  models  are  simpler  to  implement  but  have  limitations  that  warrant  future
improvements.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In the plant photosynthetic process, absorbed light energy
by chlorophyll molecules may  be transferred forward and used
for photochemical reactions, or dissipated as heat or fluores-
cence (Butler, 1978; Goltsev et al., 2003; Krause and Weis, 1991;
Lavergene and Trissl, 1995; Stirbet et al., 1998; Vredenberg, 2004;
Taiz and Zeiger, 2006). Because chlorophyll fluorescence (ChlF)
competes for energy with photochemical reactions (Lubitz et al.,
2008), the dynamics of ChlF is affected by photosynthetic activities
(Kautsky and Hirsch, 1931; Stribet and Strasser, 1996; Rohacek and
Bartak, 1999; Rohacek, 2002). This makes ChlF a useful indicator of
plant physiology and environmental changes (DeEll and Toivonen,
2003; Guo and Tan, 2010; Rodriguez and Greenbaum, 2009; Zivcak
et al., 2008).

Kinetic models are used to describe ChlF dynamics and to extract
quantitative information from measured ChlF (Lazár, 2009; Lazár
and Jablonský, 2009; Vredenberg, 2000, 2008, 2011; Vredenberg
and Prasil, 2009). Differential equations have been commonly
employed to represent the reaction kinetics (Chernev et al., 2006;
Baake and Schloder, 1992; Goltsev and Yordanov, 1997; Guo and
Tan, 2009, 2011; Lazár and Schansker, 2009; Zhu et al., 2005). While
differential equations are compact and convenient to use, they have
limitations in representing certain aspects of the process. These
limitations may  or may  not be significant for a given application
but need to be analyzed and understood.
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Each reaction center (RC) functions as an individual unit and
each has one plastoquinone A (QA) site and one plastoquinone B
(QB) site (Guo and Tan, 2009; Guo et al., 2010). An electron enter-
ing an RC is carried first by QA, then QB and later steps (Goltsev
and Yordanov, 1997; Blankenship, 2002). The individuality of the
RCs and the order of events within an RC can be represented
by first-order differential equations with possible combinations
of QA and QB states as state variables as was done in Guo et al.
(2010). ChlF emission, however, involves numerous antennas and
a pool of plastoquinones corresponding to each RC. There are
then thousands of combinations of redox or excitation states,
which makes it practically impossible to use first-order kinetics
to represent the reactions. Tokarčík (2012) attempted to model
ChlF from PSII by using pi-calculus though potential limitations of
differential equations were not specifically discussed. Using con-
centrations of individual chemical species as state variables result
in a compact set of second-order differential equations as done
in Guo and Tan (2011). The second-order differential equations,
however, implicitly assume a well-mixed system. The effects of
this assumption have not been demonstrated. Xin et al. (2013)
simulated PSII ChlF by the Monte Carlo method with explicit
description of PSII activities; however, a comparison of the results
from Monte Carlo simulation and differential equations was not
provided.

In this work, kinetic Monte Carlo (KMC) simulation (Gillespie,
1976, 1977) is used to represent the discrete events involved in
the initial phases of PSII ChlF emission. Since KMC  simulation can
represent a large number of individual RCs and other members of
the electron transport chain without resorting to assumptions, this
gives an opportunity to compare KMC  and differential equation
models.
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2. KMC  simulation of ChlF

Light may  excite a PSII antenna complex (A). An excited antenna
complex (A*) may  dissipate the absorbed energy as heat or ChlF,
or it may  transfer the absorbed energy forward for photochemi-
cal reactions. When A* transfers the absorbed energy to P680 (PSII
chlorophylls), P680 becomes excited (P680*) and may  pass the
excited electron through a pheophytin molecule to plastoquinone
QA, thus reducing QA (Goltsev and Yordanov, 1997; Blankenship,
2002). The electron carried by the reduced QA (QA

−) may  be trans-
ferred back to the antenna complex (Goltsev and Yordanov, 1997,
Guo and Tan, 2009), or may  be transferred to another plastoquinone
(QB), which is capable of receiving two electrons. QA is tightly bound
in the thylakoid membrane, but QB is loosely bound. After receiv-
ing two electrons, QB

2− will combine with two protons to become
plastoquinol (QH2) and QH2 will diffuse from the QB site to the thy-
lakoid lumen. A plastoquinone (PQ) molecule from a PQ pool will
then move to the vacated QB site and become a new QB. QH2 will
be oxidized later and becomes a PQ. The resulting PQ will return
to the PQ pool (Goltsev and Yordanov, 1997). These processes have
been modeled at different levels of complexity in the literature and
a comparison can be found in Lazár and Jablonský (2009). Some of
the models reported have 50 or more state variables. While these
models reach a high degree of completeness in representing the
activities involved, they cannot be practically used for simulation
and analysis because the complexity does not allow easy deter-
mination of model parameters from experimental data. To make
model parameter estimation possible, Guo and Tan (2011) devel-
oped a minimized model for the initial phase of PSII ChlF based on
the following 10 chemical reactions.
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where u is the excitation light intensity, k1 is the light-capture
efficiency of antennas, k2 is the dissipation rate through heat and
fluorescence, k3 is the rate at which QA is reduced in the presence
of A*, k4 is the overall rate of charge recombination, k5 through k8
are the forward or backward rates of electron transfer between QA
and QB sites, k9 is the overall rate at which QB

2− is protonated and
then replaced by a new QB from the PQ pool, k10 is the net rate of
QH2 oxidation.

By assuming continuous mixing and continuously varying con-
centrations or probabilities of occurrence of A*, QA

−, QB
−, QB

2−,
and PQ, the reactions in Eqs. (1)–(6) were modeled with five
continuous-time differential equations with the initial phases of
ChlF being proportional to k2A* in previous work (Guo and Tan,
2011). These assumptions have also been made in other differential
equation models for ChlF in the literature (Goltsev and Yordanov,
1997; Zhu et al., 2005).

The chemical reactions in Eqs. (1)–(6) can be simulated by using
the KMC  method. Since it can represent the reactions as discrete

Table 1
Reaction velocities.

Reaction rates Reaction velocities at the pth step

k1u rp1 = k1u(A0 − A*) = k1u(A0 − xp1)
k2 rp2 = k2A* = k2xp1

k3 rp3 = k3A*QA = k3xp1(1 − xp2)
k4 rp4 = k4 AQA

− = k4(A0 − xp1) xp2

k5 rp5 = k5QA
−QB = k5xp2(1 − xp3 − xp4)

k6 rp6 = k6 QAQB
− = k6(1 − xp2)xp3

k7 rp7 = k7 QA
−QB

− = k7xp2xp3

k8 rp8 = k8 QAQB
2− = k8(1 − xp2)xp4

k9 rp9 = k9 QB
2−PQ = k9 xp4 xp5

k10 rp10 = k10QH2 = k10(PQ0 − xp5)

where A0 and PQ0 are the number of antenna complexes and PQ pool size per
reaction center, respectively.

Table 2
Events to carry out.

j Events to carry out

1 A* increased by 1
2 A* decreased by 1
3 A* decreased by 1, QA

− set to 1
4  A* increased by 1, QA

− set to 0
5  QA

− set to 0, QB
− set to 1

6 QA
− set to 1, QB

− set to 0
7 QA

− set to 0, QB
− set to 0, QB

2− set to 1
8  QA

− set to 1, QB
− set to 1, QB

2− set to 0
9  QB

2− set to 0, PQ decreased by 1
10 PQ increased by 1

stochastic events as they occur in individual reaction centers, KMC
simulation should be a much closer presentation of reality than the
differential equations. The general procedure for KMC  modeling
can be found in Gillespie (1976, 1977). KMC  simulation of the 10
reactions is summarized below.

The reactions involve five independent chemical species (A*,
QA

−, QB
−, QB

2−, and PQ) and 10 reactions (represented by k1u
through k10). The amount of the ith species at iteration p is denoted
as xpi (i = 1, 2, . . .,  5), and the reaction velocity for the jth (j = 1, 2, . . .,
10) reaction at iteration p is denoted as rpj, where p is an integer to
denote Monte Carlo iterations. The simulation steps are:

Step 1: Set time t = 0 and iteration index p = 0.
Step 2: Initialize the species (x0i, i = 1, 2, . . .,  5).
Step 3: Compute the 10 reaction velocities at iteration p (rpj)
according to the current values of xpi (i = 1, 2, . . .,  5) as summarized
in Table 1.
Step 4: Calculate the cumulative reaction velocities Rpj =

∑j
q=1rpq,

j = 1, 2, . . .,  10.
Step 5: Sample a uniformly distributed random number � ∈ (0, 1].
Step 6: Determine the event (j) to carry out for which
Rp(j−1) < �Rp10 ≤ Rpj (Rp0 = 0). Note that the condition and the def-
inition of Rpj in Step 4 mean that events associated with greater
reaction velocities are more likely to occur and events for later
reactions (larger j values) would not occur right after excitation
light u is applied to an initially dark-adapted leaf.
Step 7: Carry out event j as summarized in Table 2.
Step 8: Draw another uniformly distributed random number
�′ ∈ (0, 1].
Step 9: Update time with t = t + ln(1/�′)/Rp10. Note �′ = 1 leads to
no time increase.
Step 10: Increment p and go to Step 3.

It is worth noting that in the KMC  algorithm, many RCs can be
simulated and each RC is simulated individually. This means that
different RCs may  have different model parameters. For example,
when k5 is set to zero for an RC, the QB site in the RC is rendered
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