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a  b  s  t  r  a  c  t

A  common  gene  regulatory  network  model  is  the  threshold  Boolean  network,  used  for  example  to  model
the  Arabidopsis  thaliana  floral  morphogenesis  network  or  the  fission  yeast  cell  cycle  network.  In this  paper,
we  analyze  a logical  model  of the  mammalian  cell cycle  network  and  its  threshold  Boolean  network
equivalent.  Firstly,  the robustness  of  the  network  was  explored  with  respect  to  update  perturbations,
in  particular,  what  happened  to the  attractors  for  all the deterministic  updating  schemes.  Results  on
the  number  of different  limit  cycles,  limit  cycle  lengths,  basin  of attraction  size,  for  all  the  deterministic
updating  schemes  were  obtained  through  mathematical  and  computational  tools.  Secondly,  we analyzed
the  topology  robustness  of  the  network,  by  reconstructing  synthetic  networks  that  contained  exactly  the
same attractors  as  the original  model  by  means  of  a swarm  intelligence  approach.  Our  results  indicate
that  networks  may  not  be very  robust  given  the  great  variety  of limit cycles  that  a  network  can  obtain
depending  on the  updating  scheme.  In addition,  we  identified  an  omnipresent  network  with  interactions
that  match  with  the  original  model  as  well  as  the  discovery  of new  interactions.  The  techniques  presented
in  this  paper  are  general,  and can  be used  to analyze  other  logical  or threshold  Boolean  network  models
of  gene  regulatory  networks.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Over forty years ago, Stuart Kauffman introduced Boolean
networks (BNs) as a mathematical model of gene regulatory
networks (GRNs) (Kauffman, 1969). GRNs represent the process of
gene regulation, which determines when and where genes will be
active/inactive through the interactions of DNA, RNA, proteins, and
other substances within the cell. BNs are very simple and can be
described as follows. Nodes represent genes and edges represent
the interaction between the genes (i.e., a regulation process). Each
gene is considered to act as an on-off device, the two states (on/off)
represent respectively, the status of a gene being active (gene value
= 1) or inactive (gene value = 0). Given that each node can only have
two values, for a network with n nodes, this implies that the net-
work has 2n different states. The dynamics of the network (how
the values of the nodes change through time) are governed by a
set of Boolean rules and an updating scheme. In the original model,
the updating scheme was considered to be synchronous or parallel,
such that at each time step, node values for all nodes were updated
at the same time. An important characteristic of BNs are steady
state attractors for network convergence. There are two types of
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attractors: (1) fixed point, where once a network reaches that state
it can never escape, and (2) a limit cycle, where the network returns
to a previous state with a certain periodicity. The attractors are of
interest in the context of GRNs since they represent different cell
types.

BNs are very popular within GRN modelers, in part due to their
simplicity. However, this same characteristic is a focus for criticism
as not being very realistic. For example, parallel updating schemes
have been used to model the Arabidopsis thaliana floral morphogen-
esis network (Mendoza and Alvarez-Buylla, 1998), the fission yeast
cell cycle network (Davidich and Bornholdt, 2008), and the budding
yeast cell cycle network (Li et al., 2004). These clearly include a large
assumption about the extreme regularity and tight control of global
gene expression. At first sight, this could lead to think that the par-
allel updating scheme is unrealistic and wrong. Nevertheless, it is
capable of exhibiting a dynamic behavior similar to that of biolog-
ical cells (Kauffman et al., 2003; Wuensche, 2004), specially when
cell differentiation is associated to fixed points, which are invariant
to update perturbation, thus, making the parallel updating mode a
computationally convenient selection, which is quite exhaustive in
the presence of strong stability, where the updating scheme does
not influence significantly the dynamic of the model. An example
where this phenomena occurs, and that one could consider that the
parallel is exhaustive enough, given that the behavior exhibited
with the parallel is similar for any other deterministic updating
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scheme is the budding yeast cell cycle network (Li et al., 2004)
which contains seven fixed points, and the basin of attraction for
each fixed point, in particular the one that represents the G1 phase,
does not change significantly when changing the updating scheme
(Goles et al., 2013). For the general case where one can not assure
strong stability beforehand, an interesting question arises: what
happens to the models that assume a parallel updating scheme
if a change in the updating scheme (an update perturbation)
occurs? Do the attractors remain the same, or are new attractors
derived?

The construction of GRN models from data is typically referred
to as a reverse engineering problem (Liang et al., 1998; Akutsu et al.,
1999). Building GRNs is a difficult task given the large space of pos-
sible GRN models that might fit the data and the need to search
that space in reasonable time to derive useful solutions. Several
approaches using evolutionary computation (EC) have been pro-
posed to aid in this search. For example in Mendoza et al. (2012),
Boolean network models of GRN were inferred using genetic algo-
rithms (GAs) to optimize a Tsallis entropy function. GAs were also
used in Repsilber et al. (2002) for the reconstruction of multistate
discrete network models for GRN, allowing each node (gene) to
have more than two states, and also in Kikuchi et al. (2003) for
modeling GRN as an S-system. Differential evolution (DE) has been
used for GRN reconstruction using S-systems in Chowdhury et al.
(2012), and in Noman and Iba (2007) with an information criteria-
based fitness evaluation instead of the conventional mean squared
error-based fitness evaluation. Other optimization methods such
as simulated annealing (SA) have been used. In Liu et al. (2009),
SA was used to model GRNs as Bayesian networks, and Gonzalez
et al. (2007) used SA to derive S-system models of biochemical
networks, whereas Ruz and Goles (2010) used threshold Boolean
networks. Swarm intelligence has also been used for the infer-
ence of GRNs. For instance, in Kentzoglanakis and Poole (2012) a
combination of particle swarm optimization (PSO) and ant colony
optimization (ACO) was used to reverse engineer GRNs, under
the recurrent neural network (RNN) model, from temporal gene
expression data. The ACO has also been used to search for network
structures with PSO used to finding the RNN model parameters.
Similarly, in Xu et al. (2007), PSO was used to find the network
structure and parameters of GRN modeled by RNN, using time-
series gene expression data. A comparison between EAs, PSO, and
an artificial bee colony (ABC) approach, with GRNs modeled as S-
systems, was conducted in Forghany et al. (2012). The results on
two small-size and a medium-sized hypothetical gene regulatory
networks showed that a modified version of ABC outperformed the
other techniques. Recently, the bees algorithm (BA) (Pham et al.,
2006) for reverse engineering of GRN was introduced in Ruz and
Goles (2013). Comparisons with SA for learning threshold Boolean
networks showed that the bees algorithm outperformed SA, obtain-
ing a larger number of solutions using fewer edges in the network.
The bees algorithm has been used to build synthetic networks of
the budding yeast cell-cycle in Ruz et al. (2012), and for promoting
cell proliferation for biotechnological applications. In Ruz and Goles
(2012), a reverse engineering technique was applied to the recon-
struction of the mammalian cell cycle network using the binary
gene expression data generated by the logical model in Fauré et al.
(2006). This reverse engineering method used an information the-
oretic approach combined with a modified version of the original
bees algorithm.

Here we present extensions to Ruz and Goles (2012). First, we
analyze the dynamics of the mammalian cell cycle network under
different updating schemes. It is important to note that, while in
Ruz and Goles (2012) we provided results for only 5000 sequential
updating schemes, in this paper, we analyzed all possible deter-
ministic updating schemes. This is a difficult problem, given that
there are an exponential number of updates. If the network has n

nodes, the number of updates is given by Demongeot et al. (2008):

Tn =
n−1∑
k=0

(
n

k

)
Tk, T0 = 1.

For a mammalian cell cycle network with n = 10, we have that
T(10) =102,247,563. To analyze this vast amount of dynamics, we
combined mathematical results with recent computational tech-
niques developed in Goles et al. (2013) and in Aracena et al. (2013).
We then analyzed the topology of the network, and for this portion,
we used the bees algorithm to reconstruct synthetic networks that
contained exactly the same attractors of the original model. Using
this reverse engineering approach, we  are able to identify interac-
tions which are always present and that match with the original
model as well as new interactions in these GRNs.

The rest of the paper is organized as follows. Section 2 gives a
brief description of Boolean networks, the mammalian cell cycle
network of Fauré et al. (2006), and the bees algorithm. The robust-
ness of the network under all the deterministic updating schemes
is carried out in Section 3. Section 4 approaches the study of the
topology robustness using the bees algorithm. General conclusions
are offered in Section 5.

2. Background

2.1. Boolean networks

Let x be a finite set of n variables, x = {x1, . . .,  xn}, with xi ∈ {0, 1}
for i = 1, . . .,  n. A Boolean network is a pair (G, F), where G = (V, E)
is a finite directed graph; V being the set of n nodes and E the set
of edges. F is a Boolean function, F : {0, 1}n→ {0, 1}n composed of
n local functions fi : {0, 1}n→ {0, 1}. Furthermore, each local func-
tion fi depends only on variables belonging to the neighborhood
Vi = {j ∈ V|(j, i) ∈ E}. The indegree, K, of vertex i is |Vi|. The updat-
ing schemes are repeated periodically, and since the hypercube is
a finite set, the dynamics of the network converges to attractors
which are fixed points or limit cycles, defined by

• Fixed point: xt+1
i
= xt

i
for i = {1, . . .,  n}.

• Limit cycle: xt+p
i
= xt

i
for i = {1, . . .,  n}.

where p > 1 is a positive integer called the limit cycle length. The set
of states that can lead the network to a specific attractor is termed
the basin of attraction. There are many ways of updating the values
of a Boolean network, some examples are (Aracena et al., 2009):

• Parallel or synchronous mode: where every node is updated at
the same time.
• Sequential updating mode: where in every time step, every node

is updated in a defined sequence.
• Block-sequential: the set of nodes, for a given sequence, is par-

titioned into blocks. The nodes in a same block are updated in
parallel, but blocks follow each other sequentially.
• Asynchronous deterministic: where in every time step, only one

node is updated following a defined sequence.

2.2. The mammalian cell cycle model

Initially, a differential model for the control of the mammalian
cell cycle network was  introduced by Novak and Tayson (2004).
Then, a logical version for this model was  presented by Fauré et al.
(2006). In this logical model, the mammalian cell cycle network
consisted of 10 genes (that characterize enzymatic complexes and
cofactors), therefore, there are 210 = 1024 possible states. When
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