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a  b  s  t  r  a  c  t

We  formulate  a mathematical  model  that describes  the  population  dynamics  of  bacteria  exposed  to
multiple  antibiotics  simultaneously,  assuming  that  acquisition  of  resistance  is  through  mutations  due  to
antibiotic  exposure.  Qualitative  analysis  reveals  the  existence  of  a  free-bacteria  equilibrium,  resistant-
bacteria  equilibrium  and  an endemic  equilibrium  where  both  bacteria  coexist.
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1. Introduction

Infections have been the major cause of disease throughout
the history of human population. With the introduction of antibi-
otics it was thought that this problem should disappear. However,
bacteria have been able to evolve and become resistant to antibi-
otics (Mahmoud et al., 1999). Bacterial resistance to antibiotics
is defined as the ability of bacteria to resist the effects of antibi-
otics designed to eliminate or control them (Arya, 2008). Resistance
is generated both by evolutionary pressures derived of antibac-
terial therapy, as well as the indiscriminate application of such
treatments (McMichael, 1995; Mahmoud et al., 1999). This grow-
ing phenomenon has enormous social and economic implications
reflected in a growing morbidity and mortality due to infectious
diseases, as well as the increment of treatment costs and hospital
resources (Mahmoud et al., 1999).
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Resistance has an intrinsic genetic substratum (natural), or can
be acquired by biochemical mechanisms. Thus, it can be studied as a
purely biological phenomenon or from the biochemical viewpoint
(Ammor  et al., 2007). Natural resistance is the one that is genet-
ically determined, and it is not correlated with increasing doses
of the antibiotic (e.g. the resistance of Pseudomonas aerogenous to
the benzylpenicillin, trimethylene and sulphamethoxazole; aero-
bic Gram-negative bacilli resistant to clindamycin) (Ammor et al.,
2007). Acquired resistance occurs due to specific changes in the
DNA (mutation) or through contact with external sources such as
plasmids, transposons, or integrons (Devirgiliis et al., 2011).

From molecular and biochemical viewpoint there are basically
three mechanisms for acquisition of resistance: (i) alteration of
the target site, (ii) inactivation of the antibiotic and (iii) formation
of permeability barriers. The first one alteration of the target
site, inactivation of the antibiotic and formation of permeability
barriers. The former may  arise due to altering some specific sites
of the cellular anatomy (e.g. cell wall, subunit 50s, ribosomal 30s,
etc). The second may  arise from the production of enzymes that
hydrolyze the antibiotic (e.g. �-lactamase, �-lactamase broad
spectrum, erythromycin estereasa and aminoglycoside modifying
enzymes, chloramphenicol, lincosamides and streptogramins).
The third occurs by permeation of the external or internal bacterial
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membrane. It is important outline that all of these mechanisms
can occur simultaneously (Burke, 2000).

It is said that an antibiotic has bacteriostatic action when its
function is to inhibit the growth of bacteria and bactericidal when
its function is to kill the bacteria. However, this distinction is not
absolute because it depends on the drug concentration, the species
of bacteria and the growth stage (Zhang, 2009).

In general, the bacterial infection is a complex process in which
not only the infectious bacteria plays an important role (Carvalho
et al., 2012), but also the host. In fact, a significant role in the devel-
opment of the infection is played by the immune system (Linares
and Martinez, 2005).

The evolving public health threat of antimicrobial resistance
(AMR) is driven by both appropriate and inappropriate use of
anti-infective medicines for human and animal health and food
production, together with inadequate measures to control the
spread of infections. Recognizing the public health crisis due AMR,
several nations, international agencies, and many other organi-
zations worldwide have taken action to counteract it through
strategies applied in the relevant sectors. Among them, foster
innovations, mathematical models and research and development
of new tools (World Health Organization, 2012). Mathematical
modeling has been extensively used on the understanding of the
biological mechanisms underlying the acquisition of antibiotic
resistance. Thus, in Wiesch et al. (2011), Romero et al. (2011),
Bonten et al. (2007) and Austin et al. (1997), the authors obtain
results on propagation of sensitive and resistant bacteria to antibi-
otics. Identification of factors responsible for resistance prevalence
is given in Opatowski et al. (2011), Rodrigues et al. (2007), Austin
and Anderson (1999); bacteria behavior under different antibiotic
treatments is modeled in Bootsma et al. (2012), Sun et al. (2010),
D’Agata et al. (2007), Alavez et al. (2006) and Bonhoeffer et al.
(1997); optimization results and design of control measures are
given in Sotto and Lavigne (2012), Massad et al. (2008), Haber et al.
(2010) and Bonten et al. (2007); biological cost and persistence
of antibiotic resistance are analyzed in Johnson and Levin (2013),
Antia et al. (1996), Andersson et al. (2001) and Andersson and
Levin (1999), respectively.

We  proceed to derive a continuous time model considering the
basic mechanisms of bacterial resistance to antibiotics. The main
objective is to obtain parameter dependent threshold conditions
determining the development of resistant and sensitive bacteria
population.

2. Model formulation

We  model a situation where an individual receives a cocktail of
multi-drug treatment against bacteria (like in the case of Mycobac-
terium tuberculosis). Let us denote by S(t) and R(t) the population
sizes of sensitive, and resistant bacteria to multiple antibiotics at
time t, respectively; and by Ci(t) the concentration of the ith antibi-
otic, i = 1, . . .,  n.

We assume that bacteria follow a logistic growth with carrying
capacity K. Let ˇs and ˇr the birth rate of sensitive and resistant
bacteria, respectively. Specific mutations that confer resistance to
chemical control often have an inherent fitness cost which may  be
manifested through reduced reproductive capacity or competitive
ability (Alavez et al., 2006). We  quantify fitness cost as a reduction
on the reproduction rate of the resistant strain, therefore ˇr ≤ ˇs.
During the administration of the ith antibiotic, a number of resistant
bacteria to it can emerge due to mutations of exposed sensitive
bacteria to such antibiotic, we model this situation by the term qiCiS
where qi is the mutation rate of sensitive bacteria due to exposure
to ith antibiotic.

Sensitive and resistant bacteria have per capita natural death
rates �s and �r, respectively. Sensitive bacteria also die due to the

action of the antibiotics, and we  assume that the rate at which they
are killed by the ith antibiotic is equal to ˛iSCi. Finally, the ith antibi-
otic concentration is supplied at a constant rate �i, and is taken up
at a constant per capita rate �i.

Under the assumptions aforementioned, we obtain the follow-
ing system of (n + 2) ODE:

dS

dt
= ˇsS

(
1 − S + R

K

)
−

n∑
i=1

(qi + ˛i)CiS − �sS

dR

dt
= ˇrR

(
1 − S + R

K

)
+

n∑
i=1

qiCiS − �rR

dCi

dt
= �i − �iCi, i = 1, 2, . . .,  n.

(1)

To reduce the number of parameters we introduce the following
change of variables

s = S

K
, r = R

K
and ci = Ci

�/�i
.

In the new variables, the normalized system is given by

ds

dt
= ˇss[1 − (s + r)] −

n∑
i=1

(qi + ˛i)cis − �ss

dr

dt
= ˇrr[1 − (s + r)] +

n∑
i=1

qicis − �rr

dci

dt
= �i − �ici, para i = 1, 2, . . .,  n,

(2)

with qi = qi(�i/�i), and ˛i = ˛i(�/�i). The region of biological
interest is given by the set

 ̋ =
{

(s, r, c1, . . ., cn) ∈ R
n+2 : 0 ≤ s, r ≤ 1, 0 ≤ s + r ≤ 1, 0 ≤ ci ≤ 1, i = 1, . . ., n

}
.

(3)

The following proposition assures that system (2) is well posed in
the sense that solutions with initial conditions in  ̋ remain there
for all t ≥ 0, and therefore they have biological meaning.

Proposition 2.1. The region  ̋ defined in (3) is positively invariant
with respect system (2).

Proof. The vector field of system (2) restricted to the boundary of
 ̋ does not point to the exterior of it, therefore, solutions starting

in  ̋ remain there for all t ≥ 0. �

3. Qualitative analysis of the model

We characterize the existence and stability of equilibria of the
system (2).

3.1. Equilibrium points

The equilibria of system (2) are given by the solutions of the
system of algebraic equations

ˇss[1 − (s + r)] −
n∑

i=1

(qi + ˛i)cis − �ss = 0

ˇrr[1 − (s + r)] +
n∑

i=1

qicis − �rr = 0

�i − �ici = 0, i = 1, . . .,  n.

(4)
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