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This  paper  investigates  the  dynamics  of  a competitive  single-prey  n-predators  model  of  integrated  pest
management,  which  is  subject  to  periodic  and  impulsive  controls,  from  the  viewpoint  of  finding  sufficient
conditions  for  the  extinction  of  prey  and  for  prey  and  predator  permanence.  The per  capita  death  rates
of  prey  due  to predation  are  given  in  abstract,  unspecified  forms,  which  encompass  large  classes  of  death
rates arising  from  usual  predator  functional  responses,  both  prey-dependent  and  predator-dependent.
The  stability  and  permanence  conditions  are  then  expressed  as  balance  conditions  between  the  cumula-
tive  death  rate  of prey  in a  period,  due  to predation  from  all predator  species  and  to  the  use  of  control,
and  to  the  cumulative  birth  rate  of  prey  in  the  same  amount  of  time.  These  results  are  then  specialized
for  the  case  of  prey-dependent  functional  responses,  their  biological  significance  being  also  discussed.
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1. Introduction

Recently, impulsively perturbed predator–prey models have
been employed by many researchers to discuss the efficiency of
integrated pest management strategies (see, for instance, Jiao et al.,
2008; Liu et al., 2004; Tang et al., 2005; Mailleret and Grognard,
2009). Usually, a combination of a biological control, consisting
in the release of natural predators of the prey (pest), and of a
chemical control, consisting in pesticide spraying, is used, possibly
together with an epidemiological control, consisting in the release
of infective pest individuals, being supposed that these controls
occur in periodic pulses. Further developments include consider-
ing models with stage structure for the predator (Georgescu and
Zhang, 2010), delay due to pest hatching (Zhang et al., 2008), state-
dependent impulsive perturbations (Tang and Cheke, 2005), age
structure and defence mechanisms for pests (Zhang and Georgescu,
2010), and patch structure (Yang and Tang, 2009). Another direc-
tion was considering higher-dimensional food chains (Baek, 2010),
multiple prey species (Georgescu, 2011), and multiple predator
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species (Pei et al., 2005). For a discussion on the optimal control
of three-dimensional food chains, see Apreutesei (2011, 2012).

To understand the nature of predator–prey interactions, it is of
paramount importance to quantify the effects of predation upon the
growth rates of the prey and predator classes, respectively. Ulti-
mately, for predator–prey models quantifying control problems,
the predation rate determines the extent to which the prey pop-
ulation can be regulated and the success of the predation-based
biocontrol strategy.

In this regard, the canonical form of a predator–prey interaction
can be expressed as⎧⎪⎨
⎪⎩
dN

dt
(t) = N(t)f (N(t)) − P(t)F(N(t), P(t)) − dN(N(t))N(t)

dP

dt
(t) = P(t)G(N(t), P(t)) − dP(P(t))P(t),

where N = N(t) and P = P(t) are the density of prey and predator,
respectively, f = f(N) is the per capita growth rate of the prey, F = F(N,
P) is the functional response of the predator, that is, the density of
prey individuals consumed by a single predator per unit time and
G = G(N, P) is the numerical response of the predator, that is, the per
capita growth rate of the predator class as a result of predation. Also,
dN(N) and dP(P) are the natural mortalities of prey and predator,
respectively.
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Following the standard Lotka–Volterra reasoning, one often
assumes that the growth of the predator population is propor-
tional with the amount of prey ingested, which leads to the
numerical response being expressed as G(N, P) = eF(N, P), the con-
stant e being thought as an “efficiency” constant. If F = F(N) (that
is, the functional response depends only on prey density), F is
termed “prey-dependent”, while if F = F(N, P) (that is, the func-
tional response depends on both prey and predator density), F is
termed “predator-dependent”, as the dependence on prey den-
sity is implicit. In the particular case in which F = F(N/P) (that is,
F depends on predator density through the ratio between prey and
predator density), F is termed “ratio-dependent”, the above termi-
nology being introduced in Arditi and Ginzburg (1989).  Also, one
may  denote F(N, P) = NF1(N, P), F1 being the per capita death rate of
prey due to predation.

A comparative analysis of several functional responses has been
carried out in Skalski and Gilliam (2001),  a case for predator-
dependence being constructed. See also Ginzburg and Colyvan
(2004), which point out several fallacies of both prey-dependent
functional responses and predator-dependent functional responses
(no predator interference, dealing with intrinsically different
time scales for consumption and reproduction for prey depend-
ence, perfect resource sharing for ratio dependence), McCallum
(2000) for a modelling viewpoint and Jeschke et al. (2002),
Křivan and Vrkoč (2004) for other comparative views of func-
tional responses with a particular stress on the role of prey
handling.

Recent investigations show that in typical food webs, the prey
has to face many types of predators. Investigating a total of 92 food
webs, Schoener (1989) found an average of 2.8 predator species
preying on each prey species, a close figure (3.2) being obtained
by Cohen et al. (1986).  Studying a particular desert ecosystem
(Coachella Valley), Polis (1991) identified a food web totalling a
few thousand species which averages 9.6 predator species per prey
species. See also Sih et al. (1998) for a discussion on the emergent
effects of multiple predators on a single prey (risk reduction, caused
by predator–predator interactions, and risk enhancement, caused
by conflicting prey responses to multiple predators). Discussing the
suppression of the pea aphid Acyrtosiphon pisum,  pest of the alfalfa
(lucerne) crop Medicago sativa,  Cardinale et al. (2003) found out that
when all its three natural enemies, the coccinnelid beetle Harmonia
axyridis, the damsel bug Nabis sp. and the parasitic wasp Aphidius
ervi were present, the combined effect was more than predicted
from summing the impact of each species alone, which validates
the view that biological control can be more effective under a mul-
tiple predator structure. In this regard, it has been suggested in
Tylianakis and Romo (2010) that a diverse predator structure may
be more effective when the prey has a complex life cycle and is
patchily distributed in space and time, which narrows the effec-
tiveness of this approach to arthropod control in heterogeneous
environments.

The remaining part of this paper is organized as follows. In
Section 2, we introduce the mathematical model to be discussed
and indicate the biological relevance of the assumptions on which
the model is based upon. Several auxiliary notions relating to the
Floquet theory of impulsively perturbed differential systems are
given in Section 3, where the biological well-posedness of the
model is also established. In Section 4, several quantitative prop-
erties of the so-called prey-free periodic solution are indicated
and the relationship between its stability properties and the suc-
cess of the pest management strategy is pointed out. Sufficient
conditions for the local and global stability of the prey-free peri-
odic solution are established in Section 5. Section 6 is devoted to
discussing the permanence of the system, while in Section 7 the
previously obtained results are contextualized for the case of prey-
dependent functional responses. Finally, a biological interpretation

of our results is provided in Section 8, together with a few conclud-
ing remarks.

2. The Mathematical Model and its Biological
Well-posedness

Following the previously mentioned considerations, we  are now
ready to formulate the mathematical model which is of concern in
this paper in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
(t) = x(t)(r − ax(t))

−
n∑
i=1

x(t)yi(t)ϕi(x(t), y(t)) t /= (n + l − 1)T, t /= nT;

dyi
dt

(t) = cix(t)yi(t)ϕi(x(t), y(t))

−diyi(t) t /= (n + l − 1)T, t /= nT,

1 ≤ i ≤ n;

�x(t) = −ıxx(t), t = (n + l − 1)T;

�yi(t) = −ıiyi(t), t = (n + l − 1)T,

1  ≤ i ≤ n;

�x(t) = 0, t = nT;

�yi(t) = �i, t = nT, 1 ≤ i ≤ n.

(S)

In the above model, x = x(t) represents the density of prey, being
understood that all prey individuals belong to the same species,
while yi = yi(t) represents the density of the predator species i,
1 ≤ i ≤ n, and y = (y1, y2, . . .,  yn) is the vector of all predator densities,
where n ∈ N

∗ represents the number of predator species. Gener-
ally, bold letters will be used in this paper to denote vector-valued
functions or their particular values. The constants r and a denote the
intrinsic birth rate of the prey and the effects of intraspecific compe-
tition among the prey individuals, respectively, while the constants
ci and di, 1 ≤ i ≤ n, represent the efficiency of prey conversion into
newborn predators of species i and the natural mortality of preda-
tor species i, respectively. Also, T is the common periodicity of the
impulsive perturbations and 0 < l < 1 is a parameter used to describe
the time lag lT between predator release and pesticide spraying,
which do not occur simultaneously. Here, � (t) =  (t +) −  (t),
  ∈ {x, yi, 1 ≤ i ≤ n}, represent the instantaneous jumps of the popu-
lations sizes each time the controls are used, 0 ≤ ıx < 1 and 0 ≤ ıi < 1,
1 ≤ i ≤ n, are the fixed proportions of the prey and predator popula-
tions, respectively, which are removed from the environment each
time the pesticides are sprayed and �i is the constant amount of
predators from species i, 1 ≤ i ≤ n, which are released each time.

The prey death rates due to predation by predator species i,
ϕi : [0, ∞)n+1 → [0, ∞), ϕi ∈ C([0, ∞)n+1), 1 ≤ i ≤ n, are assumed to
satisfy the following monotonicity assumptions.

(H0) For all 1 ≤ i ≤ n, (x, y) → xyiϕi(x, y) is locally Lipschitz.
(H1) For all 1 ≤ i ≤ n, x → ϕi(x, y) is nonincreasing for fixed y ∈ [0,

∞)n.
(H2a) For all 1 ≤ i ≤ n, yi → yiϕi(x, y) is nondecreasing for fixed x and

yk, k /= i.
(H2b) For all 1 ≤ i ≤ n, yj → ϕi(x, y) is nonincreasing for fixed x and

yk, k /= j, for all 1 ≤ j ≤ n.

Hypothesis (H1), (H2a), (H2b) are satisfied, for instance, if the
functional responses of the predators species are prey-dependent
of Holling type I, for which ϕ(x, y) = a, of Holling type II, for
which ϕ(x, y) = (a/1 + bx),  or of Holling type IV, for which ϕ(x,
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