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a  b  s  t  r  a  c  t

There  are  two contradictory  aspects  of  the  adaptive  process  in  evolution.  The first  is that  species  must
optimally  increase  their  own  fitness  in  a given  environment.  The  second  is  that  species  must  maintain
their  variation  to be  ready  to respond  to changing  environments.  In a  strict  sense,  these  two  aspects  might
consider  to be  mutually  exclusive.  If  species  are  optimally  adapted,  then  the  variation  in the  species  that
is suboptimal  decreases  and  vice  versa.  To  resolve  this  dilemma,  species  must  find  a balance  between
optimal  adaptation  and  robust  adaptation.  Finding  the balance  between  these  processes  requires  both
the local  and global  complete,  static information.  However,  the balance  between  the  processes  must
be  dynamic.  In this  study,  we  propose  a  model  that illustrates  dynamic  negotiation  between  the  global
and local  information  using  lattice  theory.  The  dynamic  negotiation  between  these  two  levels  results
in  an  overestimate  of fitness  for each  species.  The  overestimation  of fitness  in our  model  represents  the
multiplicity  of  fitness  which  is  sometimes  discussed  as  the  exaptation.  We  show  that  species  in our  model
demonstrate  the  power  law  of the  lifespan  distribution  and  1/f fluctuation  for the  adaptive  process.  Our
model allows  for  a balance  between  optimal  adaptation  and  robust  adaptation  without  any  arbitrary
parameters.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Adaptation is one of the intriguing issues for vast biological
events such as evolution and ecology (Darwin, 1859; MacColl,
2011). Each species must survive in varied environments. Gen-
erally, we consider fitness as explaining how species adapt to an
environment. “Survival of the fittest”, proposed by Darwin (Darwin,
1859), is the most famous theory for adaptation and evolution.
Many models for evolution have therefore applied the concept of
fitness for better or worse (Bak and Sneppen, 1993; MacColl, 2011;
Mustonen and Lässig, 2010; Sneppen et al., 1995). The celebrated
model of Bak and Sneppen explained biological evolution using a
fitness landscape (Bak and Sneppen, 1993; Sneppen et al., 1995).
Their model is very simply constructed. Each species has its own
fitness that is independent of other species, and species connect to
each other in a flood chain. A selected less fit species changes its fit-
ness randomly. The neighboring species in the food chain then also
changes its value of fitness at random. Bak and Sneppen explained
the biological evolution of an ecosystem; for example, the power
laws for extinction’s distribution, using this simple model (Bak and
Sneppen, 1993; Sneppen et al., 1995).
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The evolutional model of Bak and Sneppen provides many
suggestions for considering a species’ adaptation in the fitness land-
scape. The problem with their model, which we address here, is the
assumption of perfect information on fitness because the model
must know all of the fitness values to decide the least fit. The
requirement for knowing all of the precise fitness values assump-
tion seems unnatural. From Darwin’s evolutional theory, we surely
see the results of a species’ fitness. However, we  often observe that
nature permits unnecessary traits in species during their evolution.
The concept of exaptation, proposed by Gould (Gould, 1999; Buss
et al., 1998), could explain the existence of these traits, which seem
to be unnecessary. Exaptation has two  meanings (Gould, 1999).
One is “a feature, now useful to an organism, that did not arise as
an adaptation for its present role, but was subsequently co-opted
for its current function”. The other is “a feature that now enhance
fitness, but were not built by natural selection for their current
role”. A famous example of exaptation is the wings of birds. It is
believed that feathers were originally used for thermal regulation
before they were used for flight. This example suggests that the
traits of animals would potentially have various possible functions
that could be adapted to many situations. Therefore, we believe
that exaptation would permit multiplicity of the fitness in nature
because of the way that trait usage is open in an environment.
Fitness, which is imposed by the environment, is not determined
definitively as in the model of Bak and Sneppen. In the living world,
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it is very hard to obtain precise information, such as absolutely
knowing all fitness levels.

The assumption of complete precise information of fitness
would be a risk for erasing the essential problem of adapting species
to their environment. One typical problem is finding the balance
between optimal adaptation and robust adaptation (Eigen et al.,
1989; Wilke, 2005). The robust adaptation means that the system
must keep high diversity of species to avoid whole extinction. The
optimal adaptation means that the system must contain as many
species with the highest fitness as possible to increase their whole
fitness. These two adaptive processes, however, are mutually exclu-
sive. If we start from complete precise information of fitness, we do
find the optimal balance between two adaptive processes because
the definition of fitness is utterly imposed on the modeler (Jansen
and Stumpf, 2005; Lande and Shannon, 1996). If nature finds the
balance between them by itself, it is important to consider what is
incomplete information of fitness when we construct a model for
the adaptation.

The incomplete information of fitness would be considered as
the multiplicity of fitness as we discussed the example of exapta-
tion. Multiplicity would provide a certain interval for the selection
among species’ traits when they decide the necessary–unnecessary
traits for their survival. Of course, the reference point of the selec-
tion among species’ traits strongly depends on the context where
they live because the usage of traits also depends on their envi-
ronment. On the other hand, each individual measures its fitness
from its local incomplete observation to adapt to the environ-
ment. Therefore, the implementation of the multiplicity of fitness
is accomplished by reflecting both aspects, which are the local con-
ditions and the global (or their context) conditions.

In this paper we use lattice theory to represent the interface
between the local and the global fitness in the adaptive process to
their environment. Each species observes only parts of the environ-
ment. This incomplete local fitness is represented as fitness blocks.
The fitness blocks represent the necessary–unnecessary portion
in their traits by using binary bit strings. We  construct a lattice
from these fitness blocks. The lattice structure ensures the order
relation among each fitness block and avoids the existence of non-
comparable fitness block (element) with all other elements. The
lattice structure also evolves with time steps because the relation
among fitness blocks dynamically changes. In our evolving lattice
model, local incomplete information drives the evolution of the
constructed lattice. The global context of the fitness in our model
represents as the congruence of the lattice. To use the congruence,
the system re-estimates the incomplete local fitness using a quo-
tient lattice. The quotient lattice plays a role in identifying a set of
fitness blocks as representative one fitness blocks. We  show that
species in our model can obtain robust adaptation without any
parameter tuning using a quotient lattice.

2. Basic concepts

To construct our model, we use a lattice theory. The lattice the-
ory has widely used in the computer science such as an automaton
theory (Davey and Priestelely, 2005; Gunji et al., 2006; Vecchio
et al., 2006). Here we review the basic definitions and notion, which
are used in our model for unfamiliar readers of the lattice theory.

Definition 2.1 ((Partial order)).  Let P be a set. An order on P is a
binary relation ≤ on P such that, for all x, y, z ∈ P

(i) x ≤ x
(ii) x ≤ y and y ≤ x ⇒ x = y

(iii) x ≤ y and y ≤ z ⇒ x ≤ z�

We denote a partially ordered set by the pair (P, ≤). For example,
a set of bit (binary) strings can construct a partial order. A bit string

a1a2a3 · · · an is a finite sequence of zero or one (ai ∈ {0, 1}). An order
between two  bit strings such as a1a2a3 · · · an and b1b2b3 · · · bn is
defined by a1a2a3 · · · an ≤ b1b2b3 · · · bn if ai ≤ bi for all i. We  use a
set of bit strings in this study. However, A partial order is not a
lattice. Then we  define the meet and the join. We  define the join
“∨” and the meet “∧” of two elements x and y in P. The join can be
defined by x ∨ y = sup{x, y} when it exists. The join can be defined
by x ∧ y = inf{x, y} when it exists. The notation of sup (inf) means the
lowest (greatest) upper bound of {x, y} in P.

Definition 2.2 ((Lattice)).  Let (P, ≤) be a non-empty partially
ordered set.

If x ∨ y and x ∧ y exist for all x, y ∈ P, then (P, ≤) is called for a
lattice.�

To distinct a partially ordered set, we denote a lattice as (L, ≤,
∧, ∨). In this paper, there are often-used sets that are an ideal and
a filter. An ideal is used when we  construct the congruence on a
lattice.

Definition 2.3 ((Ideal)). Let (L, ≤, ∧, ∨) be a lattice. A non-empty
subset of J is called an ideal if

(i) x, y ∈ J implies x ∨ y ∈ J.
(ii) x ∈ L, y ∈ J and x ≤ y imply x ∈ J.�

Definition 2.4 ((Filter)). Let (L, ≤, ∧, ∨) be a lattice. A non-empty
subset of F is called an filter if

(1) x, y ∈ F implies x ∧ y ∈ F.
(2) x ∈ L, y ∈ F and y ≤ x imply x ∈ F.�

The typical example of an ideal is a down set on a lattice. The
definition of a down set is a subset J = {y ∈ L|y ≤ x} when x ∈ L. We
denote a down set of x as ↓x. It can easily be rerified that a down set
satisfies the condition of ideal. In a similar way, we can define an
upper set on a lattice such as F = {y ∈ L|x ≤ y} when x ∈ L. We  denote
an upper set of x as ↑x. We can also rerify that an upper set satisfies
the condition of a filter. Next, we consider congruence on a lattice
to define a quotient lattice. A congruence is an equivalence relation
which is restricted by a certain condition.

Definition 2.5 ((Congruence on a lattice)). Let (L, ≤, ∧, ∨) be a lattice.
Let an equivalence relation on L be � = {〈x, y〉 ∈ L × L} such that any
x, y, z ∈ L,

(i) 〈x, y〉 ∈ �.
(ii) 〈x, y〉 ∈ � ⇔ 〈y, x〉 ∈ �.

(iii) 〈x, y〉 ∈ � and 〈y, z〉 ∈ � ⇒ 〈x, z〉 ∈ �.

We also denote 〈x, y〉 ∈ � as x ≡ y (mod �). Then an equivalence
relation is a congruence on L, if for any x, y, z, w ∈ L, (x ≡ y (mod �) and
z ≡ w (mod �)) ⇒ (x ∨ z ≡ y ∨ w (mod �) and x ∧ z ≡ y ∧ w (mod �)).�

Then we can make a quotient lattice by using a congruence.

Definition 2.6 ((Quotient lattice)). Let � be a congruence on a lattice
(L, ≤, ∧, ∨), then a set L/� is defined by

L/� = {[x]� |x ∈ L} with [x]� = {y ∈ L|x ≡ y (mod �)}

The join and the meet on L/� are defined by

[x]� ∧ [y]�:=[x ∧ y]�, [x]� ∨ [y]�:=[x ∨ y]�

Then we call (L/�, ≤, ∧, ∨) the quotient lattice of L modulo �.�

In this study, we construct a quotient lattice from a given ideal.
First we  introduce the equivalence relation derived from an ideal.
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