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a  b  s  t  r  a  c  t

Biological  networks  have  two modes.  The  first  mode  is static:  a network  is a  passage  on  which  something
flows.  The  second  mode  is  dynamic:  a network  is a  pattern  constructed  by  gluing  functions  of entities
constituting  the  network.  In  this  paper,  first  we  discuss  that these  two  modes  can  be associated  with  the
category  theoretic  duality  (adjunction)  and  derive  a  natural  network  structure  (a  path  notion)  for  each
mode  by  appealing  to the  category  theoretic  universality.  The  path  notion  corresponding  to  the  static
mode  is just  the  usual  directed  path.  The  path  notion  for the  dynamic  mode  is called  lateral  path  which  is
the alternating  path  considered  on  the  set  of arcs.  Their  general  functionalities  in a  network  are  transport
and  coherence,  respectively.  Second,  we  introduce  a  betweenness  centrality  of  arcs  for  each  mode  and
see how  the  two  modes  are  embedded  in  various  real  biological  network  data.  We  find  that  there  is  a
trade-off  relationship  between  the  two  centralities:  if the  value  of  one  is large  then  the  value of  the  other
is  small.  This  can be seen  as a kind  of  division  of  labor  in a network  into  transport  on  the  network  and
coherence  of the  network.  Finally,  we  propose  an optimization  model  of  networks  based  on a quality
function  involving  intensities  of the  two  modes  in  order  to  see  how  networks  with  the  above  trade-off
relationship  can  emerge  through  evolution.  We  show  that  the  trade-off  relationship  can  be  observed  in
the evolved  networks  only  when  the  dynamic  mode  is  dominant  in the  quality  function  by numerical
simulations.  We  also  show  that  the  evolved  networks  have  features  qualitatively  similar  to  real  biological
networks  by  standard  complex  network  analysis.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In this decade, large interaction network data on biological,
social and technological systems have become available. Science of
complex networks has attempted to reveal structures and functions
underlying these network data by proposing various mathemat-
ical indices and models (Albert and Barabási, 2002; Newman,
2003; Boccaletti et al., 2006). For example, the notions of small-
world property, scale-free property and modular organization have
become important tools to understand complex systems. On the
other hand, we are aware of the criticism for purely graph-theoretic
analysis forgetting meanings of networks (Arita, 2004). However,
it makes mathematical analysis difficult if we stick to a meaning of
each individual network too much. We  might need a mathematical
language that makes discussion on meaning of networks in a large
sense possible. This paper is an attempt to discuss a comprehen-
sive meaning of nodes and arcs in directed biological networks by
appealing to category theory (MacLane, 1998).
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Applications of category theory to biology originates from
papers by R. Rosen published in the late 1950s (Rosen, 1958a,b). In
the beginning, Rosen proposed a model of the maintenance mecha-
nism of metabolic networks in terms of category theory. However,
it seems that the viewpoint of ‘network’ became implicit as his the-
ory of the metabolism-repair system developed. There are several
other attempts to describe functions of biological systems by cate-
gory theory (for example, Ehresmann and Vanbremeersch, 1987;
Wolkenhauer and Hofmeyr, 2007). Since these studies propose
highly abstract models of biological systems, it is not so clear how
they can be applied to real world data. In this paper, we theoreti-
cally extend the research direction which we have sought in recent
years (Haruna and Gunji, 2007, 2009; Haruna, 2008, 2010, 2011)
and try to make a bridge to real world data analysis.

Our starting point is two  modes of biological networks. One is
static and the other is dynamic. In the static mode, a network is a
passage on which something flows. In the dynamic mode, a network
is a pattern constructed by gluing functions of entities constitut-
ing the network. For example, let us consider a neuronal network:
nodes are neurons and arcs are synaptic connections between neu-
rons. In the static mode, the neuronal network is a passage on which
electric or chemical signals flow. On the other hand, in the dynamic
mode, each node (a neuron) is an information processing entity
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that receives signals from other nodes, modifies them and sends its
response signals to other nodes. Similar pictures can hold for other
biological networks such as ecological flow networks and gene reg-
ulation networks. Note that our dynamic mode does not consider
change along the time parameter directly. Hence, it is different from
both dynamics on networks such as percolation (Dorogovtsev et al.,
2008), synchronization (Arenas et al., 2008) and games (Szabó and
Fáth, 2007) and dynamic structural change in network structure as
in temporal networks (Holme and Saramäki, 2012), although there
may  be conceptual links with them.

How can we extract information about the two mode from a
given directed networks? In this paper, we argue that there is a nat-
ural pair of network transformations capturing features of the two
modes. One can obtain information on the static mode by applying
one network transformation to the given network and that on the
dynamic mode by applying the other. For each network transfor-
mation, a natural network path notion is associated. For the static
mode, it is simple and intuitive. If we assume that something flows
along the direction of arcs, then the notion of directed path may
be a natural network structure corresponding to the static mode.
It arises from the network transformation transforming the given
network to its line graph as shown below. For the dynamic mode,
the corresponding network transformation and the path notion are
derived via the category theoretic universality with respect to the
idea that functions of entities constituting the network are glued
on the interface among them. Once the network transformation for
the dynamic mode is derived, that for the static mode is obtained
as the unique dual transformation for it. Thus, the dynamic mode
is primary in terms of the category theoretic universality.

Before closing this section, we sketch the story without using
category theoretic terminology. The directed path corresponding
to the static mode is generated by the network transformation R 1

defined below which sends arcs to nodes in the following sense: let
G = (A, N, ∂0, ∂1) be a directed network, where A is the set of arcs,
N is the set of nodes and ∂0, ∂1 are maps from A to N sending each
arc to its source or target, respectively. A directed network R(G) =
(A∗, N∗, ∂∗0, ∂∗1) is defined by putting A* = {(f, g) ∈ A × A|∂1(f) = ∂0(g)},
N* = A and ∂∗0(f, g) = f , ∂∗1(f, g) = g for (f, g) ∈ A*. The set of arcs for
R(G) is the set of directed paths of length 2 in G. If we apply R to G
twice, then we obtain the set of directed paths of length 3 in G as
the set of arcs for R2(G). In general, the set of arcs for Rn(G) is the
set of directed paths of length n + 1 in G for any n ≥ 0.

For the network transformation R, we have the dual network
transformation L (in category theoretic terminology, both R and
L can be extended to endofunctors on the category of directed
networks and L is the left adjoint functor to R). The network trans-
formation L sends each node to an arc: for any directed network
G = (A, N, ∂0, ∂1), L(G) = (A*, N*, ∂0*, ∂1*) is defined by putting A* = N,
N* = N× {0, 1}/∼ and ∂0*(x) = [(x, 0)], ∂1*(x) = [(x, 1)] for x ∈ A*. Here,
∼ is the equivalence relation on the set N × {0, 1} generated by
the relation r defined by (x, 1)r(y, 0) :⇔ there exists f ∈ A such that
∂0(f) = x and ∂1(f) = y. [(x, i)] is the equivalence class containing (x,
i). As we will discuss in Section 2, the network transformation L can
be associated with the dynamic mode. From this, we  can derive a
path notion called lateral path that can be seen as the one dual to
the directed path.

Let us consider the meaning of the network transformation L.
When we apply L to a directed network G, each node is mapped
to an arc. We  regard this arc as representing function of the node,
namely, the arc in L(G) to which a node in G is mapped is thought of
representing a process occurring on the node. On the other hand,
we can regard each arc f in G as being sent to the node [(∂0(f),

1 For a directed network G, R(G) is so-called line graph of G. We  use the two  terms
network and graph as synonymous words.

1)](= [(∂1(f), 0)]) connecting two arcs ∂0(f) and ∂1(f) in L(G). Namely,
interaction is interface between functions. This idea is materialized as
a mathematical entity by the map  ϕ : A → N* defined by f �→ [(∂0(f),
1)]. For arcs f, g in G, a necessary and sufficient condition for the
equality ϕ(f) = ϕ(g) is the existence of an alternating sequence of
arcs in G connecting f and g such as

•
f

· · · •
g

• • • •

Note that there are 2 × 2 =4 possibilities for the situation at the
two ends of the sequence. One of them is drawn above. We  call
such an alternating sequence of arcs lateral path. 2 Since the lat-
eral path is associated with gluing of functions, we  introduce the
term coherence for its general functionality. On the other hand, the
functionality of the directed path is considered as transport on a
network here.

We  claim that the notion of lateral path is a natural network
structure associated with the dynamic mode. This claim is precisely
formulated and proved in Section 2. In this rough sketch, it may be
enough to give the following explanation: in the network transfor-
mation L, function of a node is represented by a single arc. However,
we can represent function by a more complicated graph. It does
not even need to be a graph. We  can show that the representation
of function corresponding to L occupies a special position among
all representations of function of a node (in the language of cate-
gory theory, it satisfies a certain universality): any representation
of function gives rise to a map  on the set of arcs that material-
izes the idea “interaction as interface between functions”. This map
in turn induces an equivalence relation on the set of arcs by its
fibers. The claim is that the equivalence relation for the above map
ϕ induced by L gives the finest partition of the set of arcs among all
such equivalence relations.

This paper is organized as follows. In Section 2, we describe a
mathematically precise formulation of the story sketched above.
In Section 3, we introduce betweenness centralities of arcs for the
static and dynamic modes based on directed path and lateral path,
respectively. We  see how these two modes are embedded in vari-
ous real biological network data. As a result, we find that there is a
trade-off relationship between the two  centralities: if the value of
one is large then the value of the other is small. In Section 4, we pro-
pose an optimization model of networks based on a quality function
involving intensities of the static and dynamic modes. By numerical
simulation, we  see how networks with the above trade-off relation-
ship can emerge. We show that the trade-off relationship emerges
after the evolution only when the dynamic mode is dominant in the
quality function. We  also show that the evolved networks have fea-
tures qualitatively similar to real biological networks by standard
complex network analysis. In Section 5, we give conclusions and
indicate some future directions. In Appendix, we present a gener-
alization of the theory for directed networks described in Section
2. The aim of Appendix is twofold. One is to extend the theory in
Section 2 to more general data structures. The other is to under-
stand what features of directed networks are relevant to the main
results in Section 2. We show that self-duality and acyclicity pos-
sessed by the type category for the category of directed networks
are enough to reproduce the main results in Section 2 in more
generalized situation.

2 Similar notion called alternating walk is considered in Crofts et al. (2010). How-
ever, it is defined on the set of nodes. In Crofts et al. (2010), it is used as an auxiliary
means to obtain a bipartition of directed networks. On the other hand, lateral path in
this  paper is a central stuff associated with the dynamic mode of biological networks.
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