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a  b  s  t  r  a  c  t

MP  (Metabolic  P)  systems  are a class  of  P systems  introduced  for modelling  metabolic  processes.  We
refer  to  the  dynamical  inverse  problem  as  the  problem  of  identifying  (discrete)  mathematical  models
exhibiting  an  observed  dynamics.  In  this  paper,  we  complete  the  definition  of  the  algorithm  LGSS (Log-
gain  Stoichiometric  Stepwise  regression)  introduced  in  Manca  and  Marchetti  (2011)  for  solving  a  general
class of  dynamical  inverse  problems.  To  this  aim,  we  develop  a  reformulation  of  the  classical  stepwise
regression  in  the  context  of  MP  systems.  We  conclude  with  a  short  review  of  two  applications  of  LGSS
for  discovering  the  internal  regulation  logic  of  two  phenomena  relevant  in  systems  biology.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The main framework analysis for the most part of biological
dynamics remains the theory of ordinary differential equations
(ODEs). Metabolic P systems (MP systems), based on Păun’s P systems
(Păun, 2002), were introduced in Manca et al. (2005) for mod-
elling metabolic systems by means of suitable multiset rewriting
grammars. They are essentially a particular type of finite difference
recurrent equations where “fluxes” (see later) play a role analogous
to that of derivatives in ODEs. This change of perspective, from a
continuous to a discrete approach, provides in many cases compu-
tational and modelling advantages. The following discussion and
the results of the present paper intend to argument an important
case showing such a kind of advantages.

A Metabolic P system is essentially a multiset grammar where
multiset transformations are regulated by functions (Manca, 2010;
Păun and Rozenberg, 2010). Namely, a rule like a + b → c means that
a number u of molecules of kind a and u of kind b are replaced by u
molecules of type c. The value of u is the flux of the rule application.
Let us assume to consider a system at some time steps i = 0, 1, 2,
. . .,  t (i ∈ N, the set of natural numbers). Let us also assume that a
substance x is produced by rules r1, r3 and consumed by rule r2. If
u1[i], u2[i], u3[i] are the fluxes of the rules r1, r2, r3, respectively,
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in the passage from step i to step i + 1, then the variation �x[i] of
substance x at step i is given by:

�x[i] = x[i + 1] − x[i] = u1[i] − u2[i] + u3[i]. (1)

In an MP  system, in any state the flux ul of rule rl is provided by
a state function ϕl, called regulator of the rule. A state is essentially
determined by the values of the system variables, that is, substances
and parameters (quantities which are not transformed by the rules).
However, usually only some variables enter as arguments of regu-
lators, therefore if ul = ϕl(x, y, . . .),  the arguments x, y, . . . of ϕl will
be called tuners of the regulator.

Substances (also metabolites), rules, initial values and regulators
define an MP grammar which is easily representable by an MP graph
(Manca and Bianco, 2008). The set of the rules of an MP  grammar
can be also represented by a stoichiometric matrix A, which gives
a sort of “matrix-like representation” of the system stoichiometry
(see Fig. 1). An MP  system is essentially an MP  grammar equipped
with a temporal interval �, a conventional mole size �, and substances
masses, which specify the time and population (discrete) granular-
ities, respectively (Manca, 2010; Păun and Rozenberg, 2010).

MP systems inherited from P systems the multiset rewrit-
ing mechanism as their fundament, by developing a different
perspective. In fact, while P systems were essentially unconven-
tional computational models, MP  systems are intended to generate
dynamics instead of computations. Namely, their aim in modelling
biological phenomena is that of finding the multiset rewriting
mechanism underlying an observed biological behaviour. They
were successfully applied in many modelling contexts (Manca and
Marchetti, 2010b,a; Manca et al., 2011; Marchetti and Manca, 2012)
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Fig. 1. An example of MP  grammar (where ∅ denotes an empty multiset and
substance symbols occurring in regulators denote the corresponding substance
quantities), the stoichiometric matrix A  is directly deduced by the MP  grammar on
the  top left corner. The MP  graph on the top right corner is obtained by translating
the  rules in the source-target-edge notation.

and in this paper we will present a systematic approach for obtain-
ing MP  models from time series of observed dynamics.

Now, let us consider the MP  grammar of Fig. 1. If we  suppose
to start from a given initial state, then the fluxes of our system are
given by calculating ϕ1(Z[i]), ϕ2(Z[i]), ϕ3(Z[i]), ϕ4(Z[i]) and ϕ5(Z[i])
for some suitable values of c1, c2, . . .,  c8 where we  denote by Z[i]
the state vector of substances and parameters at time i.

This means that if U[0] denotes the (column) vector of fluxes at
time 0, then the substance variation vector

�[0] = (�A[0], �B[0],  �C [0])T

is given by the following matrix (row by column) product

�[0] = A  × U[0]

that is

�[0] =

⎛⎜⎝ 1 −1 0 −1 0
0 1 −1 0 0
0 0 0 1 −1

⎞⎟⎠×

⎛⎜⎜⎝
u1[0]
u2[0]
u3[0]
u4[0]
u5[0]

⎞⎟⎟⎠ .

Therefore, a Metabolic P system with n substances, m reactions of
regulators ϕ1, ϕ2, . . .,  ϕm, and stoichiometric matrix A, has a dynam-
ics given by the following Equational Metabolic Algorithm (EMA):

�[i] = A  × U[i] (2)

where the flux vector U[i] is computed by applying the regulators
to the state vector Z[i] of substances and parameters at time i.

1.1. The Dynamical Inverse Problem

Given an MP  system, the recurrent equation system EMA  (2)
generates the evolution of substances, according to the MP  gram-
mar  of the system (starting from an initial metabolic state, and with
the knowledge of parameter evolution in time). In other words,
when regulators ϕ1, ϕ2, . . .,  ϕm are given, then fluxes can be com-
puted and then the substance variations follow easily from the
stoichiometry.

The dynamical inverse problem is the opposite verse of this pro-
cess. In fact, let us assume to “observe” a metabolic system for a
number of steps (separated by a temporal interval). How  can we
discover an MP  system which provides the dynamics which we
observe? The substances and the reactions in question are given
by the particular phenomenon we want to describe. Moreover,
the stoichiometry can be deduced by a basic knowledge of the
phenomenon, but how to know the fluxes of matter transforma-
tion which are responsible of the observed evolution? This is the
problem of discovering the flux regulation maps, or simply, the Reg-
ulation Discovery Problem. This problem can be considered as the
“MP  version” of a more general problem very important in systems
biology (Ideker et al., 2001; Kitano, 2002), that is, how to define
dynamical systems that explain observed dynamics of phenom-
ena under investigation, by taking into account what is already
known about each phenomenon. When such kind of systems are
defined, then we  can hope of discovering something new about the
phenomena under investigation (Bailey, 1998). In ODE terms, this
corresponds to the right determination of the kinetic constants of
the model. However, even when differential models are prohibitive,
due to the lack of information about the internal mechanism driving
the dynamics, our method provides a grammatical formalization of
the phenomenon under investigation, by discovering at same time
numerical parameters and algebraic forms of regulators.

The Regulation Discovery Problem has been widely discussed
in Manca and Marchetti (2011) where a powerful regression algo-
rithm, called LGSS (Log-gain Stoichiometric Stepwise regression),  has
been introduced for solving the problem. The LGSS algorithm com-
bines the log-gain principles developed in the MP  system theory
(Manca, 2009) with an extension of the classical method of Step-
wise Regression (Hocking, 1976), which is a statistical regression
technique based on Least Squares Approximation (Luenberger,
1969) and a statistical F-test (Draper and Smith, 1981). The method
can be correctly applied independently from any knowledge about
reaction rate kinetics, and can provide, with respect to differen-
tial models, different and even simpler mathematical formulations
(Manca and Marchetti, 2010b,a; Manca et al., 2011; Marchetti and
Manca, 2012).

In this paper we will extend the concepts introduced in Manca
and Marchetti (2011) by formulating the stepwise regression
method in order to be correctly applied to LGSS. The starting point of
this formulation is the concept of stoichiometric expansion which
will be explained in the next section.

2. The ADA Stoichiometric Expansion

If we know some time series of global states giving the state of
the system at regular time intervals, that is, the vector sequence

(Z[i]|i ∈ N),

then we can read Eq. (2) by reversing the known values with the
unknown ones. In fact, by writing the substance variation vector

Z[i + 1] − Z[i] = �[i]

and assuming n substances and m reactions, then we  get the fol-
lowing system ADA (Avogadro and Dalton Action, see Manca, 2010;
Păun and Rozenberg, 2010)

A  × U[i] = �[i] (3)

of n equations and m unknowns (the m components of the flux
vector U[i]). Since usually the number of reactions in the system is
greater than the number of substances, the number of unknowns
of (3) is usually grater than the number of its equations and this
makes the ADA system not univocally solvable. For this reason, in
previous papers (Manca, 2008, 2010; Păun and Rozenberg, 2010)
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