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a  b  s  t  r  a  c  t

Exploring  common  features  and  universal  qualities  shared  by  a particular  class  of  networks  in  biological
and other  domains  is  one  of the  important  aspects  of  evolutionary  study.  In  an  evolving  system,  evolu-
tionary  mechanism  can  cause  functional  changes  that  forces  the  system  to adapt  to  new  configurations
of interaction  pattern  between  the  components  of  that  system  (e.g.  gene  duplication  and  mutation  play  a
vital role  for  changing  the  connectivity  structure  in  many  biological  networks.  The  evolutionary  relation
between  two  systems  can  be retraced  by their  structural  differences).  The  eigenvalues  of the  normalized
graph  Laplacian  not  only  capture  the  global  properties  of  a network,  but  also  local  structures  that  are
produced  by  graph  evolutions  (like  motif  duplication  or  joining).  The  spectrum  of this  operator  carries
many  qualitative  aspects  of  a  graph.  Given  two  networks  of  different  sizes,  we  propose  a method  to
quantify  the  topological  distance  between  them  based  on  the  contrasting  spectrum  of  normalized  graph
Laplacian.

We find  that  network  architectures  are  more  similar  within  the  same  class  compared  to  between
classes.  We  also  show  that the  evolutionary  relationships  can  be  retraced  by  the  structural  differences
using  our  method.  We  analyze  43  metabolic  networks  from  different  species  and  mark  the  prominent
separation  of three  groups:  Bacteria,  Archaea  and  Eukarya.  This  phenomenon  is  well  captured  in  our
findings  that support  the  other  cladistic  results  based  on gene  content  and  ribosomal  RNA  sequences.
Our  measure  to  quantify  the  structural  distance  between  two  networks  is useful  to  elucidate  evolutionary
relationships.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In evolving systems, some dynamics play a role to organize the
connections between the components of that system. In a broad
sense, due to the interplay between the structure and dynamics,
biological and other networks evolve with different evolution-
ary dynamics are expected to have different structures while
the networks constructed from the same evolutionary process
have structural similarities. It is important to find the prominent
structural difference between different types of networks, e.g.,
metabolic, protein–protein interaction, power grid, co-authorship
or neural networks. Studies of common features and universal qual-
ities shared by a particular class of a biological network is one of
the most important aspects of evolutionary studies. In that regard,
one can think about the differences between the networks within
a same class (for instance among all metabolic networks), and also
pose a question: are two evolutionary metabolic networks from
two different species more similar than others?
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In the last few years different notions of graph theory have
been applied and new heuristic parameters have been introduced
to analyze different aspects of network topology such as degree
distribution, average path length, diameter, betweenness central-
ity, transitivity or clustering coefficient, etc. (see Newman, 2003 for
details). These quantities can capture some specific but not all qual-
itative aspects of a graph. With these parameters, it is not always
easy to distinguish or compare the topology of different real net-
works and to predict their source of formation. A popular trend
is to categorize networks according to their degree distribution
which is the distribution of kn, the number of vertices that have
degree n. It has been observed that most of the real networks have
power-law degree distribution (Albert et al., 1999; Barabási and
Albert, 1999; Guimera et al., 2005; Jeong et al., 2000, 2001; Redner,
1998) which is a very general network quality. Graphs with same
degree sequences can have a very different synchronizability (Atay
et al., 2006a,b). The invariants like average path length or diam-
eter of a graph can vary widely depending on the details of the
preferential attachment rule chosen (Jost and Joy, 2002b).  Thus the
power-law degree distribution fails to distinguish networks from
different systems. The relative frequencies of small motifs help to
categorize real networks into some superfamilies (Milo et al., 2002,
2004) but it cannot distinguish the networks very well within a
superfamily. Hence focusing on specific features and qualities is
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not enough to reveal the structural complexity in biological and
other networks.

In this article, we propose a method to quantify the structural
differences between two networks. The basic tool we  employed to
characterize the qualitative topological properties of a network is
the normalized graph Laplacian (in short Laplacian) spectra (Jost
and Joy, 2002a).  The multiplicity of the smallest eigenvalue �0 is
equal to the number of components in the graph. The distance of
the highest eigenvalue �N−1 from 2 reflects how far the graph is
away from the bipertiteness. Another property of the spectra of a
bipartite graph is if � is an eigenvalue, 2 − � is also an eigenvalue
of that graph and hence the spectral plot will be symmetric about
1. The first nontrivial eigenvalue �1 (for connected graph) tells us
how easily one graph can be cut into two different components.
For the complete connected graph with N vertices, all nontrivial
eigenvalues are equal to N/(N − 1) (see Chung, 1997; Jost, 2007 for
the details). Not only the global properties of a graph structure are
reflected by the Laplacian spectrum, local structures produced by
certain evolutionary processes like motif joining or duplication are
also well captured by the eigenvalues of this operator (Banerjee and
Jost, 2007a, 2008a, 2009a). For instance, a single vertex (the sim-
plest motif) duplication produces eigenvalue 1, which can be found
with a very high multiplicity in many biological networks. Duplica-
tion of an edge (motif of size two) that connects the vertices i1 and
i2 generates the eigenvalues �± = 1 ± (1/

√
ni1 ni2 ), and the dupli-

cation of a chain (i1 − i2 − i3) of length 3 produces the eigenvalues
� = 1, 1 ±

√
1/ni2 ((1/ni1 ) + (1/ni3 )) (where ni is the degree of the

vertex i). The duplication of these two motifs create eigenvalues
which are close to 1 and symmetric about 1. For certain degrees of
vertices, the duplication of these motifs can generate specific eigen-
values 1 ± 0.5 and 1 ± √

0.5 which are also mostly observed in the
spectrum of real networks. If we join a motif � (with an eigenvalue
�) with an eigenfunction that vanishes at a vertex i ∈ � by identi-
fying the vertex i with any vertex of a graph �, the new graph will
also have the same eigenvalue �. As an example, if we join a trian-
gle that itself has an eigenvalue 1.5 to any graph, it contributes the
same eigenvalue to the new graph produced by the joining process
(for more details see Banerjee and Jost, 2007a,b, 2008a, 2009a,b).
See Jost and Joy (2002a), Rangarajan and Ding (2002) and Atay et al.
(2004) for how the spectra can influence dynamical properties like
synchronization. Thus the various local structures of a graph can
leave significant traces in the spectrum which is a good charac-
teristic. The distribution of the spectrum has been considered as a
qualitative representation of the structure of a graph (Banerjee and
Jost, 2007b).  In other way around, with the good algorithms one can
reconstruct a graph from its spectrum (up to isospectrality) (Ipsen
and Mikhailov, 2002). Comparative studies on real networks are
difficult because of their complicatedness, irregular structure and
different sizes. Graphs of similar sizes can be aligned on each other
to compare the structural similarities. For any graph, all eigenval-
ues of the graph Laplacian operator are bounded within a specific
range (0–2). This is an added advantage when comparing spectral
plots of graphs with different sizes.

Spectral plots that can distinguish networks of different origins
have been widely used to classify real networks from different
sources (Banerjee and Jost, 2008b).  Since networks constructed
from the same evolutionary process produce very similar spectral
plots, the distance between spectral distributions can be consid-
ered as a measure of structural differences. Hence it can be used
to study the evolutionary relation between networks. In this paper
we quantify this distance with the help of a divergence measure
(Jensen–Shannon divergence) between two distributions. We  con-
sider this as a quantitative distance measure of those two  structures
and show that the evolutionary relationships between the net-
works can be derived from their topological similarities captured
by this quantification.

To find the efficiency of this method, we apply it on the
simulated networks constructed from the artificial evolutionary
processes. The method successfully shows that the evolutionary
relations between the networks can be retraced by their structural
differences. Afterwards we apply this method to the metabolic net-
works of 43 species and show that the phylogenic evidences can be
traced from the measurement of their structural distances.

1.1. Previous work

In the last few years, different methods such as elementary
mode analysis (Schuster et al., 2000), method of singular value
decomposition (SVD) of extreme pathways (Price et al., 2002),
comparison of extreme pathways and elementary mode (Papin
et al., 2004), etc. have been applied to characterize and compare
metabolic pathways and networks.

Different graph theoretical approaches like comparison of the
network indices, degree distribution and motif profile (Zhu and Qin,
2005) have been explored to compare metabolic network struc-
tures. For the evolving system, a general graph alignment method
has been considered for the cross-species analysis of interaction
networks (Berg and Lässig, 2006).

Several other methods such as multivariate analysis on the
enzyme and substrate ranking (Poldani et al., 2001), comparison of
network similarity by obtaining the similarity score between the
vertices (Heymans and Singh, 2003), enzyme, reaction, and gene
contents comparison (Ma and Zeng, 2004) have also been applied
to reconstruct the phylogeny comparing the metabolic networks.
Different operations from the set algebra have been used on the net-
work to trace the phylogeny (Forst et al., 2006). Metabolic network
structures have been compared by using graph kernel to recon-
struct the phylogenetic tree (Oh et al., 2006). Mazurie et al. (2008)
has predicted cross species phylogenetic distance by computing
the distances between the vectors with the components of several
network-descriptors which are estimated on the NIP (network of
interacting pathways). Borenstein (2008) has predicted the phylo-
genetic tree by comparing the seed compound content.

In this paper, we  implemented a method that is based on the
graph spectrum and which carries many qualitative aspects of a
graph to compare different network structures. This is a very gen-
eral graph theoretical method and can be applied to any kind
of networks without having any prior knowledge about their
source. Our aim is not to reconstruct the phylogenetic tree, but
rather to find the evolutionary closeness between the networks
from the same evolving system. In the same context, Erten et al.
(2009) performed a phylogenetic analysis of protein–protein inter-
action networks based on the conservation and divergence of
modular components, and Mano et al. (2010) attempted to find
the co-evolutionary relationships between metabolic pathways by
comparing them to the evolutionary relationship between differ-
ent organisms based on the combined similarities of all of their
metabolic pathways.

2. Methods

2.1. Spectrum of graph Laplacian

The normalized graph Laplacian operator (�) is represented on an undirected
and unweighted graph � that represents a network with a vertex set V = {i : i = 1, . . .,
N}.  The vertices i and j are called neighbors if they are connected by an edge. The
degree ni of a vertex i is the number of neighbors of i. The graph Laplacian (Banerjee
and Jost, 2008a; Jost, 2007; Jost and Joy, 2002a)  has been defined as the N × N matrix
�  = (�)ij , i, j = 1, . . .,  N where

(�)ij :=

{
1 if i = j

− 1
ni

if i and j areneighbors

0 otherwise

(1)
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