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a b s t r a c t

In this paper, we consider two complementary cost functions for the landscape exploring processes to
obtain the global optimum sequence through in vitro evolution protocol: one is the entropic cost Cetp,
which is based on the deviation from the uniformity of a mutant distribution in sequence space, and the
other is the energetic cost Ceng, which is based on the total number of sequences to be generated and
evaluated. Based on a prior knowledge about the structure of a given fitness landscapes, the conductor of
the experiment can think up the efficient search algorithm (ESA), which requires the minimum number
of points (=sequences) to be searched up to the global optimum. For five typical fitness landscapes,
we considered their respective (putative) ESA, C∗

etp and C∗
eng based on the ESA. As a result, we found a

trade-off relationship between C∗
etp and C∗

eng for every case, that is, C∗
eng + C∗

etp is approximately equal
to the logarithm of the volume of the sequence space. C∗

etp and C∗
eng are interpreted in terms of the

information-theoretic concepts.
© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In vitro evolution is comprehended as an optimization process
on a given fitness landscape, where “fitness landscape” is defined
by the mapping from sequences (=genotype) to the corresponding
fitness values (Wright, 1932; Maynard-Smith, 1970). Recent devel-
opment of this field has been reviewed in some books (e.g. Arnold,
2000) and review papers (e.g. Romero and Arnold, 2009). Ideally,
it is desiable to find the global optimum sequence at the sum-
mit. The efficient search algorithm on fitness landscapes is deeply
dependent on our knowledge about statistical orders of the struc-
tures of fitness landscapes (Wolpert and Macready, 1997), where
“the efficient search algorithm (which is abbreviated to ESA)” is
defined as a particular strategy that requires the minimum num-
ber of points (=sequences) to be searched up to the global optimum.
For example, we can say that the fitness landscapes with high order,
such as Fujiyama landscape, have a lot of information about their
structures. That is, we know the mutational effect is additive for
Fujiyama landscape. Therefore, we should think up the efficient
search algorithm based on the available information.

Generally, the search process is conducted by two processes:
mutagenesis and selection. In the mutagenesis process, controlling
the distribution of mutant sequences in sequence space requires
a “cost” that originates from the negative entropy. Therefore, we
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introduced the entropic cost: Cetp. If a site-directed mutagenesis is
applied and the mutant sequences are distributed in a local area
in sequence space, Cetp is large due to strong control of mutations.
This control is done by our intelligence or replication fidelity of
replication enzyme (e.g. DNA polymerase) (Ishii et al., 1989; Cady
and Qian, 2009). If mutant sequences are distributed randomly in
sequence space, Cetp is small due to no control of mutations. On
the other hand, the energy consumed through all the processes is
proportional to the total number N of sequences to be generated
and evaluated. Therefore, we introduced the energetic cost defined
by Ceng = ln N.

As a whole, there seems a trade-off relationship between ener-
getic cost Ceng and entropic cost Cetp based on the corresponding
ESA. For example, it is easy to find the global optimum sequence
of Fujiyama landscape, because one has only to identify the fittest
letter for each site by positional scanning method. In this case, Ceng

is small due to small number of N, while Cetp is large due to strong
control of mutations. On the other hand, as for random rugged land-
scape, an exhaustive search over the sequence space is necessary
by performing random synthesis of all possible sequences. In this
case, Ceng is large due to vast numbers of N, while Cetp is small due
to no control of mutations.

In this paper, focusing on five typical fitness landscapes, we
considered their respective (putative) ESA, Cetp and Ceng based on
the ESA. Our aim is to describe quantitatively a trade-off relation-
ship between Ceng and Cetp, and to interpret them in terms of the
information-theoretic concepts.
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2. Definition

2.1. Deviation from the uniformity of a mutant distribution in
sequence space

We consider all conceivable sequences of ��, where � is the num-
ber of all sites and � is the number of available letters for each site.
The � is much larger than one (� � 1). Then, an arbitrary sequence
s (s = 1, 2, · · · , ��) is mapped into the corresponding point in the
�-valued �-dimensional sequence space.

Consider that sequences with an infinite population are dis-
tributed in sequence space according to the underlying probability

distribution Q (s)
(∑��

s=1Q (s) = 1
)

, where Q(s) is a probability of

being occupied by a sequence s in sequence space. Let d be the
Hamming distance between two arbitrary sequences among the
population, and let P(d)

(∑�
d=0P(d) = 1

)
be the probability distri-

bution of d over all pairs of them. That is, the probability distribution
Q(s) is converted to the probability distribution P(d) by

P(d) =
��∑

s=1

��∑
s′=1

ı(d(s, s′), d) Q (s)Q (s′), (1)

where d(s, s′) is the Hamming distance between sequences s and s′,
and ı(x, x0) is the Kronecker’s delta defined by

ı(x, x0) ≡
{

1, if x = x0
0, if x /= x0.

Let B(d) be a back ground distribution where sequences are dis-
tributed randomly over the sequence space. As the deviation from
the uniformity of a mutant distribution in the sequence space, we
introduce the following relative entropy D:

D ≡
�∑

d=0

P(d) ln
P(d)
B(d)

, (2)

B(d) =
(

�
d

)(
1 − 1

�

)d(1
�

)(�−d)
. (3)

Eq. (3) is derived in Appendix A, based on the “profile” of given
sequences (Gribskov et al., 1987).

2.2. Energetic cost and entropic cost for in vitro evolution

In this paper, we consider landscape exploring processes to
obtain the global optimum sequence through in vitro evolution
protocol. In vitro evolution is conducted by iterating the evolu-
tion cycle, which consists of generating mutant sequences of Nt,
measuring fitness values of them and selecting the fittest one
from among them. The Nt sequences consist of heterogeneous
sequences. The step number of the iteration process is denoted by t
(t = 1, 2, 3, · · · , te). Suppose that the following two different costs are
generated in the in vitro evolution: one is the “energetic cost” Ceng,
which is based on the total number of sequences to be generated
and evaluated, the other is the “entropic cost” Cetp, which is based
on the deviation from the uniformity of a mutant distribution in
sequence space.

Consider that, in the t th step, mutant sequences of Nt are
generated according to the underlying probability distribution

Qt(s)
(∑��

s=1Qt(s) = 1
)

, where Qt(s) is a probability of being occu-

pied by a sequence s in sequence space. Note that the shape of
Qt(s) is set up by the “conductor”, who sets up the experimental
algorithm and implements it. The probability distribution Qt(s) is
converted to the probability distribution of the Hamming distance d
between arbitrary two sequences, Pt(d)

(∑�
d=0Pt(d) = 1

)
, by using

Eq. (1). Therefore, we apply the measure D defined in Eq. (2) to the
probability distribution for the t th step, Pt(d):

Dt ≡
�∑

d=0

Pt(d) ln
Pt(d)
B(d)

. (4)

We note the following two similar but different cases: one is the
case where a single particular sequence s* is generated (Nt = 1),
and the other is the case where a single arbitrary sequence s is
generated (Nt = 1). For the former case, Dt = �ln �, because Qt(s) is
given by the Kronecker’s delta, Qt(s) = ı(s, s*), and then Pt(d) = ı(d, 0).
For the latter case, Dt = 0, because Qt(s) is the uniform distribution,
Qt(s) = 1 / ��, and then Pt(d) = B(d). Then, we define the “entropic
cost” through the whole evolution process by

Cetp ≡ 〈D〉 ≡ 1
te

te∑
t=1

Dt. (5)

In this paper, we use 〈X〉 as the arithmetic mean of a t-dependent
quantity Xt over the whole process from t = 1 to t = te.

The energy consumed through all the processes is proportional
to the total number of sequences to be generated and evaluated.
Let Ntot be the number of points (=sequences) to be searched up to
reaching the global optimum sequence: Ntot =

∑te
t=1Nt . We define

the “energetic cost” by

Ceng ≡ ln Ntot. (6)

The total cost is defined by

Ctot ≡ Ceng + Cetp. (7)

Both Cetp and Ceng range from 0 to �ln �.

2.3. Typical fitness landscape and efficient search algorithm

Here, we define a “typical fitness landscape” as a set of all pos-
sible landscapes described by a given mathematical model with
several parameters (e.g. Fujiyama landscape, NK landscape). A typ-
ical fitness landscape has its characteristic order and then the
conductor knows it as a prior knowledge about the landscape.
The conductor’s job is to obtain the global optimum sequence of
the given typical landscape by implementing an “efficient search
algorithm”, where the efficient search algorithm (which is abbre-
viated to ESA) is, in this paper, defined as a particular algorithm
that requires the minimum number of points (=sequences) to be
searched up to reaching the global optimum. This minimum num-
ber is denoted by N∗

tot. Based on the prior knowledge about the given
landscape, the conductor can think up the corresponding ESA. Cetp,
Ceng, and Ctot based on the corresponding ESA are denoted by C∗

etp,
C∗

eng (= ln N∗
tot), and C∗

tot, respectively.
The ESA gives the minimum value of Ceng. We can define another

search algorithm that gives the minimum value of Ctot. However,
determining this algorithm for a given landscape is so difficult.
Therefore, we leave it and focus on the ESA in this paper.

3. Application to typical fitness landscapes

In this section, as for five typical fitness landscapes, we con-
sider their respective ESA, C∗

etp, C∗
eng and C∗

tot based on the ESA. In
some cases, although the conductor can think up a putative ESA
for a given landscape, the putative ESA is however difficult to be
proven true rigorously. Therefore, the ESAs we described below
are putative ones. The results are complied in Table 1.

3.1. Additive fitness landscape (Fujiyama landscape)

In this case, each letter at every site in a given sequence
contributes to the fitness independently and additively, that is,
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