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a b s t r a c t

Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic
genetic networks producing bistability and oscillations have been designed and constructed experimen-
tally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics
of those complex networks is often richer than the dynamics of simple modules. Here we couple the
genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations,
respectively. We study two types of coupling. In the first type, the bistable switch is under the control of
the oscillator. Numerical simulation of this system allows us to determine the conditions under which
a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show
how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily
be obtained in the system. In the second type of coupling, the oscillator is placed under the control of
the Toggle switch. Numerical simulation of this system shows that this construction could for example
be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations
(and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical
behaviors that can be generated through the coupling of two simple network modules. These results
differ from the dynamical properties resulting from interlocked feedback loops systems in which a given
variable is involved at the same time in both positive and negative feedbacks. Finally the models described
here may be of interest in synthetic biology, as they give hints on how the coupling should be designed
to get the required properties.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Switches and oscillations are found in many biological systems
(Tyson et al., 2008). Oscillatory behaviors have been described
at various levels of organism organization, ranging from neu-
ronal rhythms to biochemical oscillations and circadian clocks
(Goldbeter, 1996). These oscillations often originate from negative
regulatory feedbacks and, usually, take the form of limit cycles in
the phase plane. For example, the core molecular mechanism of cir-
cadian clocks is based on the repression exerted by a clock protein
on the expression of its own gene (Dunlap, 1999; Young and Kay,
2001). In parallel, since the work of Jacob and Monod (1961) the
switch phenomenon has become more and more popular because it
provides a rational basis to explain the condition-specific activation
of some genes. Bistability is a particular mode of switch in which
two stable steady states coexist. Such a situation was described in
detail for the lactose operon (Novick and Weiner, 1957; Ozbudak et
al., 2004) but is likely to occur in many genetics or other molecular
systems.
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With the recent availability of large scale data on genetic reg-
ulations, much attention has been given to unravel the regulatory
motifs in genetic regulatory networks (Shen-Orr et al., 2002; Milo
et al., 2002; Alon, 2003, 2007). Over-represented motifs in those
networks include positive and negative feedback loops, feedfor-
ward loops, etc. (Alon, 2007). These motifs constitute the building
blocks of large gene regulatory networks. Similar motifs are also
found in other biological networks, including signaling cascades
(Kholodenko, 2006) and neuronal networks (Sporns and Kotter,
2004). The dynamical properties of these motifs have been exten-
sively studied, mainly by means of mathematical models (Tyson
et al., 2003; Alon, 2006). These approaches are indeed commonly
used nowadays to unravel the design principles of large genetic
networks. It should nevertheless be stressed that the dynamics of
regulatory motifs has already been the object of numerous inves-
tigations in the past (Griffith, 1968a,b; Glass and Kauffman, 1973;
Tyson and Othmer, 1978; Thomas and D’Ari, 1990). These pioneer
works already established general properties of genetic networks
and have shown, for instance, that a negative circuit is required
to produce oscillations whereas a positive circuit is required to
generate multistability.

Complementary to theoretical modeling and motivated by these
models, synthetic switches and oscillators have been designed,
analysed mathematically, and implemented in real biological
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systems. The Repressilator (Elowitz and Leibler, 2000) and the Tog-
gle switch (Gardner et al., 2000) constitute two prototypes of such
types of systems. The Repressilator is composed of three genes cod-
ing for repressor proteins. Their promoters are genetically modified
in such a way that the expression of each gene is repressed by
the next protein of this three-gene cyclical network. Because it is
based on a negative circuit, under some assumptions, this system
exhibits self-sustained oscillations. The Toggle switch is composed
of two genes which mutually repress each other. Under appropriate
conditions, this positive circuit leads to bistability.

The dynamical properties of the Repressilator and the Toggle
switch have been the subject of several theoretical investigations.
Previous works include stochastic simulations of the Toggle switch
(Tian and Burrage, 2006; Wang et al., 2007), stochastic simulations
of the Repressilator (Loinger and Biham, 2007) and synchronization
of coupled Repressilators (Garcia-Ojalvo et al., 2004; Wang et al.,
2006). Each model is based either on the Repressilator alone or the
Toggle switch alone. However, biological systems are composed of
interconnected positive and negative circuits (Tsai et al., 2008).

The aim of the present study is to unravel the compositional
rules that govern the dynamics of systems combining simple mod-
ules. While systems of coupled biological oscillators have been
intensively studied (Zhou et al., 2008), the coupling between bio-
logical switches and clocks was not systematically investigated
yet. Here, we study the dynamical properties resulting from the
coupling between the Repressilator and the Toggle switch model.
This coupled model differs from the models proposed by Tsai et al.
(2008) and by Kim et al. (2008) in the way the two circuits are con-
nected. In the latter models, one variable of the oscillator is directly
involved in a positive circuit. The coupling is thus obtained by a
common variable between the two circuits. The coupling consid-
ered here is indirect. Two types of coupling are considered. In the
first case, the expression of one gene of the Toggle switch is under
the control of one protein of the Repressilator. In the second type
of coupling, the expression of one gene of the Repressilator is con-
trolled by the Toggle switch. These two models can thus be regarded
as master/slave systems in which one system is under the control
of the other. Such type of unidirectional coupling, which should be
distinguished from mutual coupling, is likely to be present at mul-
tiple stages of genetic regulatory networks which were shown to
be hierarchical.

The paper is organized as follows. In Section 2, we recall the
equations of the Repressilator and of the Toggle switch models and
illustrate the main dynamical properties of these two systems. In
Section 3, we describe the dynamics resulting from the two kinds of
coupling described above. In Section 4, we discuss possible appli-
cations of the results in biological systems.

2. Model

2.1. Repressilator

The Repressilator is a model in which three genes are cyclically
organized in such a way that the protein coded by each gene acts as
a repressor of the transcription of the next gene in the cycle (Elowitz
and Leibler, 2000). The dynamics of this model is described by six
ordinary differential equations:

dMi

dt
= �

(
−Mi + ˛i

1 + Pm
mod(i+1,3)

)
with i = 1, 2, 3 (1)

dPi

dt
= �

(
ˇiMi − �iPi

)
with i = 1, 2, 3 (2)

In these equations, Mi and Pi stand for the concentration of
mRNA and protein corresponding to gene i (with i = 1, . . ., 3).
The inhibition is described by the Hill function ˛i/(1 + Pm

mod(i+1,3))

where “mod” is the modulo function. Parameters ˛i represent
the maximum rate of mRNA synthesis of gene i. Parameter � has
been introduced to allow us to easily control the time scale of
the dynamics (and thereby the period of the oscillations gener-
ated by this model). Variables and time have been rescaled and
adimensionalized.

The dynamics of the Repressilator is shown in Fig. 1. For the
default parameter values (see Elowitz and Leibler, 2000, and leg-
end of Fig. 1), the model displays limit-cycle oscillations. Because
of the symmetry in the model and in the parameters values cho-
sen, each mRNA (protein) oscillates with the same amplitude, but
the oscillations are out-of-phase (Fig. 1A). For each gene, the pro-
tein level directly follows the mRNA level. This explains why the
limit cycle, in the plane mRNA/protein is close to the diagonal
(Fig. 1B). The bifurcation diagram shown in Fig. 1C shows that
the amplitude of the oscillations increases when parameter ˛1
is increased and that the oscillations are lost when this control
parameter goes below a critical value. This value, called a Hopf
bifurcation, is located at ˛HB = 6.3. Fig. 1D shows how the period
is affected when parameter ˛1 is changed within the oscillatory
domain. The period of the oscillations slightly increases as ˛1
increases.

2.2. Toggle Switch

The Toggle switch system is constituted by two genes which
mutually inhibit each other (Gardner et al., 2000). The dynamics
of this model is described by two differential equations:

dX

dt
= a1

1 + Yn
− d1X + b1 (3)

dY

dt
= a2

1 + Xn
− d2Y + b2 (4)

In this model, no distinction is made between the gene and the
protein. Adding evolution equations analogous to Eq. (2) to distin-
guish protein from mRNA would not affect the results qualitatively.
The inhibition is described by the Hill functions a1/(1 + Yn) and
a2/(1 + Xn) where a1 and a2 denote the maximum rate of X and Y
mRNA synthesis, respectively, and n is the cooperativity. Parame-
ters b1 and b2 describe an independent synthesis source of X and Y,
resulting for example from another promoter, which is not subject
to the inhibitory effect of X and Y, but can be controlled by other,
external factors. Here again, variables and time have been rescaled
and adimensionalized.

The dynamics of the Toggle switch is illustrated in Fig. 2. For the
default parameters values (see Gardner et al., 2000, and legend of
Fig. 2), the model displays bistability; i.e. coexistence between two
stable steady states. As shown in Fig. 2A, bistability occurs in a range
of values of a1 delimited by two bifurcation points, called “saddle
nodes”. These bifurcations, characteristic of a hysteretic behavior,
are located at aSN1 = 1.4 and aSN2 = 6.8. Analysis in the phase space
highlights the bistability: the two nullclines cross each other in
three points, the middle one being the unstable steady state, while
the two others correspond to stable steady states (Fig. 2C). Depend-
ing on the initial conditions, the system will converge to either one
or the other stable steady sate (Fig. 2E).

When the value of a1 is larger than the value of the second
saddle node (a1 > aSN2), there is no bistability (Fig. 2B): the two
nullclines cross each other at a single point, corresponding to the
unique stable steady state (Fig. 2D). However, starting from an ini-
tial condition corresponding to the lower steady state observed
for a smaller value of a1, the trajectory does not jump immedi-
ately to the upper steady state, but stays transiently at a low value
(Fig. 2F).
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